Exemple #1
0
def recovery_time(v, t=None, p=0.90):
    """
    Time to ``p*100%`` recovery from first local extremum to initial value.
    
    Intended for action potential duration and the like.
    
    :param array_like t: Time, defaults to [0, 1, 2, ...].
    
    Examples:
    
    >>> recovery_time([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 0])
    11.8...
    >>> recovery_time([10, 0, 20], [100, 101, 102])
    101.45
    >>> recovery_time([10, 0, 20], p=0.5)
    1.25
    """
    if t is None:
        t = np.arange(len(v))
    assert 0 <= p <= 1
    ex = extrema.extrema(v)[:3] # first three extrema including initial value
    # We'll interpolate in a monotone slice of (v, t)
    start, end = ex.index[1], 1 + ex.index[2]
    vi, ti = v[start:end], t[start:end]
    vp = p * ex.value[0] + (1 - p) * ex.value[1] # recovery criterion
    if ex.curv[1] < 0: # recovering from a maximum
        vi = vi[::-1] # interp requires vi to be increasing,
        ti = ti[::-1] # so reverse vi and ti
    return np.interp(vp, vi, ti) # interpolate t as function of v [sic]
Exemple #2
0
def ph2agg(ph, tol=1e-3):
    """Phenotype aggregation."""
    e = extrema(ph["V"], withend=False)
    peak = e[e.curv < 0]
    trough = e[e.curv > 0]
    if len(peak.index) >= 2:
        t0, t1 = ph["t"].squeeze()[peak.index[-2:]]
        period = t1 - t0
        amplitude = peak.value[-1] - trough.value[-1]
        if amplitude < tol:
            period = amplitude = 0.0
    else:
        period = amplitude = 0.0
    return np.rec.fromrecords([(period, amplitude)], 
        names=["period", "amplitude"])