Exemple #1
0
def test_setting_weights():
    X = cgt.matrix("X", fixed_shape=(None, 28*28))
    model = build_model(X, 0.0)
    nnbuilder.set_all_weights(model, 'mnist.p')
    y = cgt.vector("y", dtype='i8')
    cost = -cgt.mean(categorical.loglik(y, model))
    selected_number = cgt.argmax(model, axis=1)
    err_nodrop = cgt.cast(cgt.not_equal(selected_number, y), cgt.floatX).mean()
    computeloss = cgt.function(inputs=[X, y], outputs=[err_nodrop, cost])

    Xdata, ydata = load_data()

    Xtrain = Xdata[0:60000]
    ytrain = ydata[0:60000]

    Xtest = Xdata[60000:70000]
    ytest = ydata[60000:70000]

    sortinds = np.random.permutation(60000)
    Xtrain = Xtrain[sortinds]
    ytrain = ytrain[sortinds]

    print fmt_row(10, ["Epoch","Train NLL","Train Err","Test NLL","Test Err","Epoch Time"])
    for i_epoch in xrange(3):
        tstart = time.time()
        elapsed = time.time() - tstart
        trainerr, trainloss = computeloss(Xtrain[:len(Xtest)], ytrain[:len(Xtest)])
        testerr, testloss = computeloss(Xtest, ytest)
        print fmt_row(10, [i_epoch, trainloss, trainerr, testloss, testerr, elapsed])
Exemple #2
0
def main():
    print("Loading data...")
    X = cgt.matrix("X", fixed_shape=(None, 28*28))
    y = cgt.vector("y", dtype='i8')

    model = build_model(X, 0.0)
    loss = -cgt.mean(categorical.loglik(y, model))

    updates = nn.rmsprop(loss, nn.get_parameters(loss), 0.01)
    train = cgt.function(inputs=[X, y], outputs=[], updates=updates)

    y_nodrop = cgt.argmax(model, axis=1)

    cost_nodrop = -cgt.mean(categorical.loglik(y, model))
    err_nodrop = cgt.cast(cgt.not_equal(y_nodrop, y), cgt.floatX).mean()

    computeloss = cgt.function(inputs=[X, y], outputs=[err_nodrop, cost_nodrop])


    batch_size=128
    Xdata, ydata = load_data()

    Xtrain = Xdata[0:60000]
    ytrain = ydata[0:60000]

    Xtest = Xdata[60000:70000]
    ytest = ydata[60000:70000]

    sortinds = np.random.permutation(60000)
    Xtrain = Xtrain[sortinds]
    ytrain = ytrain[sortinds]

    print fmt_row(10, ["Epoch","Train NLL","Train Err","Test NLL","Test Err","Epoch Time"])
    for i_epoch in xrange(3):
        tstart = time.time()
        for start in xrange(0, Xtrain.shape[0], batch_size):
            end = start+batch_size
            train(Xtrain[start:end], ytrain[start:end])
        elapsed = time.time() - tstart
        trainerr, trainloss = computeloss(Xtrain[:len(Xtest)], ytrain[:len(Xtest)])
        testerr, testloss = computeloss(Xtest, ytest)
        print fmt_row(10, [i_epoch, trainloss, trainerr, testloss, testerr, elapsed])

    nnbuilder.save_weights(model, 'mnist')
Exemple #3
0
def main():
    X = cgt.matrix(name='data', dtype=cgt.floatX, fixed_shape=(None, 2212))
    y = cgt.vector("y", dtype='i8')
    model = build_nn(X)
    loss = -cgt.mean(categorical.loglik(y, model))
    updates = nn.adagrad(loss, nn.get_parameters(loss), 0.01)

    y_nodrop = cgt.argmax(model, axis=1)

    cost_nodrop = -cgt.mean(categorical.loglik(y, model))
    err_nodrop = cgt.cast(cgt.not_equal(y_nodrop, y), cgt.floatX).mean()

    train = cgt.function(inputs=[X, y], outputs=[], updates=updates)
    computeloss = cgt.function(inputs=[X, y], outputs=[err_nodrop, cost_nodrop])

    batch_size = 20
    Xdata, ydata = load_data()

    Xtrain = Xdata[0:5200]
    ytrain = ydata[0:5200]

    Xtest = Xdata[5200:5573]
    ytest = ydata[5200:5573]

    sortinds = np.random.permutation(5200)
    Xtrain = Xtrain[sortinds]
    ytrain = ytrain[sortinds]

    print fmt_row(10, ["Epoch","Train NLL","Train Err","Test NLL","Test Err","Epoch Time"])
    for i_epoch in xrange(20):
        tstart = time.time()
        for start in xrange(0, Xtrain.shape[0], batch_size):
            end = start+batch_size
            train(Xtrain[start:end], ytrain[start:end])
        elapsed = time.time() - tstart
        trainerr, trainloss = computeloss(Xtrain[:len(Xtest)], ytrain[:len(Xtest)])
        testerr, testloss = computeloss(Xtest, ytest)
        print fmt_row(10, [i_epoch, trainloss, trainerr, testloss, testerr, elapsed])
Exemple #4
0
def main(num_epochs=NUM_EPOCHS):
    #cgt.set_precision('half')
    print("Building network ...")
    # Recurrent layers expect input of shape
    # (batch size, max sequence length, number of features)
    X = cgt.tensor3(name='X', fixed_shape=(N_BATCH, MAX_LENGTH, 2))
    l_forward = nnbuilder.recurrentLayer(nn_input=X, num_units=N_HIDDEN)
    l_backward = nnbuilder.recurrentLayer(nn_input=X, num_units=N_HIDDEN, backwards=True)
    #l_forward = nnbuilder.LSTMLayer(nn_input=X, num_units=N_HIDDEN, activation=cgt.sigmoid)
    #l_backward = nnbuilder.LSTMLayer(nn_input=X, num_units=N_HIDDEN, activation=cgt.sigmoid, backwards=True)
    #l_forward = nnbuilder.GRULayer(nn_input=X, num_units=N_HIDDEN, activation=nn.rectify)
    #l_backward = nnbuilder.GRULayer(nn_input=X, num_units=N_HIDDEN, activation=nn.rectify, backwards=True)
    l_forward_slice = l_forward[:, MAX_LENGTH-1, :]  # Take the last element in the forward slice time dimension
    l_backward_slice = l_backward[:, 0, :]  # And the first element in the backward slice time dimension
    l_sum = cgt.concatenate([l_forward_slice, l_backward_slice], axis=1)
    l_out = nnbuilder.denseLayer(l_sum, num_units=1, activation=cgt.tanh)
    target_values = cgt.vector('target_output')
    predicted_values = l_out[:, 0]  # For this task we only need the last value
    cost = cgt.mean((predicted_values - target_values)**2)
    # Compute SGD updates for training
    print("Computing updates ...")
    updates = nn.rmsprop(cost, nn.get_parameters(l_out), LEARNING_RATE)
    #updates = nn.nesterov_momentum(cost, nn.get_parameters(l_out), 0.05)
    # cgt functions for training and computing cost
    print("Compiling functions ...")
    train = cgt.function([X, target_values], cost, updates=updates)
    compute_cost = cgt.function([X, target_values], cost)

    # We'll use this "validation set" to periodically check progress
    X_val, y_val, mask_val = gen_data()

    print("Training ...")
    time_start = time.time()
    try:
        for epoch in range(num_epochs):
            for _ in range(EPOCH_SIZE):
                X, y, m = gen_data()
                train(X, y)
            cost_val = compute_cost(X_val, y_val)
            print("Epoch {} validation cost = {}".format(epoch+1, cost_val))
            print ('Epoch took ' + str(time.time() - time_start))
            time_start = time.time()
    except KeyboardInterrupt:
        pass
Exemple #5
0
def main():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--epochs", type=int, default=10)
    parser.add_argument("--profile", action="store_true")
    parser.add_argument("--dropout", action="store_true")
    parser.add_argument("--stepsize", type=float, default=.001)
    parser.add_argument("--model", choices=["dense", "conv"], default="dense")
    parser.add_argument("--unittest", action="store_true")
    parser.add_argument("--grad_check", action="store_true")
    args = parser.parse_args()

    if args.grad_check: cgt.set_precision("quad")

    # from mldata.org http://mldata.org/repository/data/viewslug/mnist-original/
    # converted to npz
    mnist = fetch_dataset("http://rll.berkeley.edu/cgt-data/mnist.npz")

    Xdata = (mnist["X"] / 255.).astype(cgt.floatX)
    ydata = mnist["y"]

    np.random.seed(0)

    if args.model == "conv":
        Xdata = Xdata.reshape(-1, 1, 28, 28)

    Xtrain = Xdata[0:60000]
    ytrain = ydata[0:60000]

    Xtest = Xdata[60000:70000]
    ytest = ydata[60000:70000]

    sortinds = np.random.permutation(60000)
    Xtrain = Xtrain[sortinds]
    ytrain = ytrain[sortinds]

    X = cgt.tensor4("X",
                    fixed_shape=(None, 1, 28,
                                 28)) if args.model == "conv" else cgt.matrix(
                                     "X", fixed_shape=(None, 28 * 28))
    y = cgt.vector("y", dtype='i8')

    if args.model == "dense":
        p_drop_input, p_drop_hidden = (0.2, 0.5) if args.dropout else (0, 0)
        w_h = init_weights(784, 256)
        w_h2 = init_weights(256, 256)
        w_o = init_weights(256, 10)
        pofy_drop = dense_model(X, w_h, w_h2, w_o, p_drop_input, p_drop_hidden)
        pofy_nodrop = dense_model(X, w_h, w_h2, w_o, 0., 0.)
        params = [w_h, w_h2, w_o]
    elif args.model == "conv":
        p_drop_conv, p_drop_hidden = (0.2, 0.5) if args.dropout else (0, 0)
        w = init_weights(32, 1, 3, 3)
        w2 = init_weights(64, 32, 3, 3)
        w3 = init_weights(128, 64, 3, 3)
        w4 = init_weights(128 * 2 * 2, 625)
        w_o = init_weights(625, 10)
        pofy_drop = convnet_model(X, w, w2, w3, w4, w_o, p_drop_conv,
                                  p_drop_hidden)
        pofy_nodrop = convnet_model(X, w, w2, w3, w4, w_o, 0., 0.)
        params = [w, w2, w3, w4, w_o]
    else:
        raise RuntimeError("Unreachable")

    cost_drop = -cgt.mean(categorical.loglik(y, pofy_drop))
    updates = rmsprop_updates(cost_drop, params, stepsize=args.stepsize)

    y_nodrop = cgt.argmax(pofy_nodrop, axis=1)
    cost_nodrop = -cgt.mean(categorical.loglik(y, pofy_nodrop))
    err_nodrop = cgt.cast(cgt.not_equal(y_nodrop, y), cgt.floatX).mean()

    train = cgt.function(inputs=[X, y], outputs=[], updates=updates)
    computeloss = cgt.function(inputs=[X, y],
                               outputs=[err_nodrop, cost_nodrop])

    batch_size = 128

    from cgt.tests import gradcheck_model
    if args.grad_check:
        cost_nodrop = cgt.core.clone(cost_nodrop, {
            X: Xtrain[:1],
            y: ytrain[:1]
        })
        print "doing gradient check..."
        print "------------------------------------"
        gradcheck_model(cost_nodrop, params[0:1])
        print "success!"
        return

    if args.profile: cgt.profiler.start()

    print fmt_row(10, [
        "Epoch", "Train NLL", "Train Err", "Test NLL", "Test Err", "Epoch Time"
    ])
    for i_epoch in xrange(args.epochs):
        tstart = time.time()
        for start in xrange(0, Xtrain.shape[0], batch_size):
            end = start + batch_size
            train(Xtrain[start:end], ytrain[start:end])
            if args.unittest: return
        elapsed = time.time() - tstart
        trainerr, trainloss = computeloss(Xtrain[:len(Xtest)],
                                          ytrain[:len(Xtest)])
        testerr, testloss = computeloss(Xtest, ytest)
        print fmt_row(
            10, [i_epoch, trainloss, trainerr, testloss, testerr, elapsed])
    if args.profile: cgt.execution.profiler.print_stats()
Exemple #6
0
def main():
    import argparse
    parser=argparse.ArgumentParser()
    parser.add_argument("--epochs",type=int,default=10)
    parser.add_argument("--profile",action="store_true")
    parser.add_argument("--dropout",action="store_true")
    parser.add_argument("--stepsize",type=float, default=.001)
    parser.add_argument("--model",choices=["dense","conv"],default="dense")
    parser.add_argument("--unittest",action="store_true")
    parser.add_argument("--grad_check",action="store_true")
    parser.add_argument("--devtype",choices=["cpu","gpu"],default="cpu")
    args = parser.parse_args()

    if args.grad_check: cgt.set_precision("quad")

    # from mldata.org http://mldata.org/repository/data/viewslug/mnist-original/
    # converted to npz
    mnist = fetch_dataset("http://rll.berkeley.edu/cgt-data/mnist.npz")

    Xdata = (mnist["X"]/255.).astype(cgt.floatX)
    ydata = mnist["y"]

    np.random.seed(0)

    cgt.update_config(default_device=cgt.core.Device(devtype=args.devtype), backend="native")

    if args.model=="conv":
        Xdata = Xdata.reshape(-1, 1, 28, 28)

    Xtrain = Xdata[0:60000]
    ytrain = ydata[0:60000]

    Xtest = Xdata[60000:70000]
    ytest = ydata[60000:70000]

    sortinds = np.random.permutation(60000)
    Xtrain = Xtrain[sortinds]
    ytrain = ytrain[sortinds]

    X = cgt.tensor4("X",fixed_shape=(None,1,28,28)) if args.model=="conv" else cgt.matrix("X", fixed_shape=(None,28*28))
    y = cgt.vector("y",dtype='i8')

    if args.model == "dense":
        p_drop_input,p_drop_hidden = (0.2, 0.5) if args.dropout else (0,0)    
        w_h = init_weights(784, 256)
        w_h2 = init_weights(256, 256)
        w_o = init_weights(256, 10)
        pofy_drop = dense_model(X, w_h, w_h2, w_o, p_drop_input, p_drop_hidden)
        pofy_nodrop = dense_model(X, w_h, w_h2, w_o, 0., 0.)
        params = [w_h, w_h2, w_o]        
    elif args.model == "conv":
        p_drop_conv,p_drop_hidden = (0.2, 0.5) if args.dropout else (0,0)            
        w = init_weights(32, 1, 3, 3)
        w2 = init_weights(64, 32, 3, 3)
        w3 = init_weights(128, 64, 3, 3)
        w4 = init_weights(128 * 2 * 2, 625)
        w_o = init_weights(625, 10)
        pofy_drop = convnet_model(X, w, w2, w3, w4, w_o, p_drop_conv, p_drop_hidden)
        pofy_nodrop = convnet_model(X, w, w2, w3, w4, w_o, 0., 0.)
        params = [w, w2, w3, w4, w_o]
    else:
        raise RuntimeError("Unreachable")

    cost_drop = -cgt.mean(categorical.loglik(y, pofy_drop))
    updates = rmsprop_updates(cost_drop, params, stepsize=args.stepsize)

    y_nodrop = cgt.argmax(pofy_nodrop, axis=1)
    cost_nodrop = -cgt.mean(categorical.loglik(y, pofy_nodrop))
    err_nodrop = cgt.cast(cgt.not_equal(y_nodrop, y), cgt.floatX).mean()

    train = cgt.function(inputs=[X, y], outputs=[], updates=updates)
    computeloss = cgt.function(inputs=[X, y], outputs=[err_nodrop,cost_nodrop])

    batch_size=128


    from cgt.tests import gradcheck_model
    if args.grad_check:
        cost_nodrop = cgt.core.clone(cost_nodrop, {X:Xtrain[:1],y:ytrain[:1]})
        print "doing gradient check..."
        print "------------------------------------"
        gradcheck_model(cost_nodrop, params[0:1])
        print "success!"
        return

    if args.profile: cgt.profiler.start()

    print fmt_row(10, ["Epoch","Train NLL","Train Err","Test NLL","Test Err","Epoch Time"])
    for i_epoch in xrange(args.epochs):
        tstart = time.time()
        for start in xrange(0, Xtrain.shape[0], batch_size):
            end = start+batch_size
            train(Xtrain[start:end], ytrain[start:end])
            if args.unittest: return
        elapsed = time.time() - tstart
        trainerr, trainloss = computeloss(Xtrain[:len(Xtest)], ytrain[:len(Xtest)])
        testerr, testloss = computeloss(Xtest, ytest)
        print fmt_row(10, [i_epoch, trainloss, trainerr, testloss, testerr, elapsed])
    if args.profile: cgt.execution.profiler.print_stats()
Exemple #7
0
def mean(x):
    return cgt.mean(x)
Exemple #8
0
    def __init__(self,
                 model="dense",
                 im_size=[28, 28],
                 dropout=True,
                 devtype="cpu",
                 grad_check=True,
                 reg=0):
        if grad_check: cgt.set_precision("quad")
        self.model = model
        self.reg = reg
        np.random.seed(0)
        cgt.update_config(default_device=cgt.core.Device(devtype=devtype),
                          backend="native")
        print(model)
        # MLP with 1 hidden layer
        if model == "dense1":
            self.Xsize = 2 * im_size[0] * im_size[1] + im_size[0] + im_size[1]
            self.X = cgt.matrix("X", fixed_shape=(None, self.Xsize))
            self.y = cgt.vector("y", dtype='i8')
            self.p_drop_input, self.p_drop_hidden = (0.2,
                                                     0.5) if dropout else (0,
                                                                           0)
            self.w_h = init_weights(self.Xsize, 256)
            self.w_o = init_weights(256, 8)
            self.pofy_drop = dense_model1(self.X, self.w_h, self.w_o,
                                          self.p_drop_input,
                                          self.p_drop_hidden)
            self.pofy_nodrop = dense_model1(self.X, self.w_h, self.w_o, 0., 0.)
            self.params = [self.w_h, self.w_o]
            self.l1 = cgt.abs(self.w_h).sum() + cgt.abs(self.w_o).sum()
            self.cost_drop = -cgt.mean(
                categorical.loglik(self.y,
                                   self.pofy_drop)) + self.reg * self.l1
        # MLP with 2 hidden layers
        elif model == "dense2":
            self.Xsize = 2 * im_size[0] * im_size[1] + im_size[0] + im_size[1]
            self.X = cgt.matrix("X", fixed_shape=(None, self.Xsize))
            self.y = cgt.vector("y", dtype='i8')
            self.p_drop_input, self.p_drop_hidden = (0.2,
                                                     0.5) if dropout else (0,
                                                                           0)
            self.w_h = init_weights(self.Xsize, 256)
            self.w_h2 = init_weights(256, 256)
            self.w_o = init_weights(256, 8)
            self.pofy_drop = dense_model2(self.X, self.w_h, self.w_h2,
                                          self.w_o, self.p_drop_input,
                                          self.p_drop_hidden)
            self.pofy_nodrop = dense_model2(self.X, self.w_h, self.w_h2,
                                            self.w_o, 0., 0.)
            self.params = [self.w_h, self.w_h2, self.w_o]
            self.l1 = cgt.abs(self.w_h).sum() + cgt.abs(
                self.w_h2).sum() + cgt.abs(self.w_o).sum()
            self.cost_drop = -cgt.mean(
                categorical.loglik(self.y,
                                   self.pofy_drop)) + self.reg * self.l1
        # MLP with 3 hidden layers
        elif model == "dense3":
            self.Xsize = 2 * im_size[0] * im_size[1] + im_size[0] + im_size[1]
            self.X = cgt.matrix("X", fixed_shape=(None, self.Xsize))
            self.y = cgt.vector("y", dtype='i8')
            self.p_drop_input, self.p_drop_hidden = (
                0.0, [0.5, 0.5, 0.5]) if dropout else (0, [0, 0, 0])
            self.w_h = init_weights(self.Xsize, 256)
            self.w_h2 = init_weights(256, 256)
            self.w_h3 = init_weights(256, 256)
            self.w_o = init_weights(256, 8)
            self.pofy_drop = dense_model3(self.X, self.w_h, self.w_h2,
                                          self.w_h3, self.w_o,
                                          self.p_drop_input,
                                          self.p_drop_hidden)
            self.pofy_nodrop = dense_model3(self.X, self.w_h, self.w_h2,
                                            self.w_h3, self.w_o, 0.,
                                            [0., 0., 0.])
            self.params = [self.w_h, self.w_h2, self.w_h3, self.w_o]
            self.l1 = cgt.abs(self.w_h).sum() + cgt.abs(self.w_h2).sum() + cgt.abs(self.w_h3).sum() + \
                      cgt.abs(self.w_o).sum()
            self.cost_drop = -cgt.mean(
                categorical.loglik(self.y,
                                   self.pofy_drop)) + self.reg * self.l1
        else:
            raise RuntimeError("Unknown Model")

        self.y_nodrop = cgt.argmax(self.pofy_nodrop, axis=1)
        self.cost_nodrop = -cgt.mean(
            categorical.loglik(self.y, self.pofy_nodrop))
        self.err_nodrop = cgt.cast(cgt.not_equal(self.y_nodrop, self.y),
                                   cgt.floatX).mean()
        self.computeloss = cgt.function(
            inputs=[self.X, self.y],
            outputs=[self.err_nodrop, self.cost_nodrop])
        self.y_out = cgt.function(inputs=[self.X], outputs=[self.y_nodrop])
        self.updates = rmsprop_updates(self.cost_drop, self.params)
        self.train = cgt.function(inputs=[self.X, self.y],
                                  outputs=[],
                                  updates=self.updates)
Exemple #9
0
def mean(x):
    return cgt.mean(x)
ytrain = ytrain[sortinds]

# Model:
# Two linear/affine layers with a ReLU activation in between
# followed by a logsoftmax.
X = cgt.matrix('X', fixed_shape=(None, 784))
y = cgt.vector('y', dtype='i8')

layer1 = nn.Affine(784, 400, weight_init=nn.XavierNormal())(X)
act1 = nn.rectify(layer1)
layer2 = nn.Affine(400, 400, weight_init=nn.XavierNormal())(act1)
act2 = nn.rectify(layer2)
probs = nn.softmax(nn.Affine(400, 10)(act2))

y_preds = cgt.argmax(probs, axis=1)
cost = -cgt.mean(categorical.loglik(y, probs))
err = cgt.cast(cgt.not_equal(y, y_preds), cgt.floatX).mean()

params = nn.get_parameters(cost)
updates = nn.sgd(cost, params, learning_rate) # train via sgd

# training function
f = cgt.function(inputs=[X, y], outputs=[], updates=updates)
# compute the cost and error
cost_and_err = cgt.function(inputs=[X, y], outputs=[cost, err])

for i in xrange(epochs):
    t0 = time.time()
    for start in xrange(0, Xtrain.shape[0], batch_size):
        end = batch_size + start
        f(Xtrain[start:end], ytrain[start:end])