def make_plot(self, orientation): # make some data points x = arange(3) x = ArrayDataSource(x, sort_order="ascending") y = array([2, 0, 1]) # Plot the data pd = ArrayPlotData(x=x, y=y) plot = Plot(pd, orientation=orientation) line_plot = plot.plot(("x", "y"))[0] # Construct a fake screen space for the plots # otherwise would need to actually display the plots to get this index_mapper = LinearMapper(data_range=DataRange1D(low=0, high=2), high_pos=380, low_pos=20) value_mapper = LinearMapper(data_range=DataRange1D(low=0, high=2), high_pos=380, low_pos=20) plot.index_mapper = index_mapper plot.value_mapper = value_mapper line_plot.index_mapper = index_mapper line_plot.value_mapper = value_mapper return plot, line_plot
def make_plot(self, orientation): # make some data points x = arange(3) x = ArrayDataSource(x, sort_order="ascending") y = array([2,0,1]) # Plot the data pd = ArrayPlotData(x=x, y=y) plot = Plot(pd, orientation=orientation) line_plot = plot.plot(("x", "y"))[0] # Construct a fake screen space for the plots # otherwise would need to actually display the plots to get this index_mapper = LinearMapper(data_range=DataRange1D(low=0,high=2), high_pos=380, low_pos=20) value_mapper = LinearMapper(data_range=DataRange1D(low=0,high=2), high_pos=380, low_pos=20) plot.index_mapper = index_mapper plot.value_mapper = value_mapper line_plot.index_mapper = index_mapper line_plot.value_mapper = value_mapper return plot, line_plot
def _create_1D1_plot(self): index = 0 plot0 = Plot(self.plotdata, padding=0) plot0.padding_left = 5 plot0.padding_bottom = 5 Container = OverlayPlotContainer(padding = 50, fill_padding = True, bgcolor = "lightgray", use_backbuffer=True) y1 = range(len(self.PCAData.batchs[0].prescores)) points = [] for batch in self.PCAData.batchs: if (self.active_scores_combobox == "Post Scores"): x1 = self.PCAData.batchs[index].postscores else: x1 = self.PCAData.batchs[index].prescores if (self.Shape == self.phenotypes[0]): a = 1 elif (self.Shape == self.phenotypes[1]): a = batch.number elif (self.Shape == self.phenotypes[2]): a = batch.type else: a = 0 if (self.Color == self.phenotypes[0]): b = 0 elif(self.Color == self.phenotypes[1]): b = batch.number elif(self.Color == self.phenotypes[2]): b = batch.type else: b = 0 tmarker = shapes[a] bcolor = self.colors[b] for i in range(len(x1)): points.append((x1[i],y1[i])) plot0 = create_scatter_plot((x1,y1), marker = tmarker, color=getColor(bcolor)) if batch.isSelected: plot0.alpha = 1 else: plot0.alpha = 0.2 plot0.bgcolor = "white" plot0.border_visible = True if index == 0: value_mapper = plot0.value_mapper index_mapper = plot0.index_mapper add_default_grids(plot0) add_default_axes(plot0, vtitle='PCA Indices', htitle='PCA Scores') plot0.index_range.tight_bounds = False plot0.index_range.refresh() plot0.value_range.tight_bounds = False plot0.value_range.refresh() plot0.tools.append(PanTool(plot0)) zoom = ZoomTool(plot0, tool_mode="box", always_on=False, maintain_aspect_ratio=False) plot0.overlays.append(zoom) dragzoom = DragZoom(plot0, drag_button="right", maintain_aspect_ratio=False) plot0.tools.append(dragzoom) else: plot0.value_mapper = value_mapper value_mapper.range.add(plot0.value) plot0.index_mapper = index_mapper index_mapper.range.add(plot0.index) Container.add(plot0) index = index +1 self.RightPlot = Container
def _create_1D1_plot(self): index = 0 plot0 = Plot(self.plotdata, padding=0) plot0.padding_left = 5 plot0.padding_bottom = 5 Container = OverlayPlotContainer(padding=50, fill_padding=True, bgcolor="lightgray", use_backbuffer=True) y1 = range(len(self.PCAData.batchs[0].prescores)) points = [] for batch in self.PCAData.batchs: if (self.active_scores_combobox == "Post Scores"): x1 = self.PCAData.batchs[index].postscores else: x1 = self.PCAData.batchs[index].prescores '''if (self.Shape == self.phenotypes[0]): a = 1 elif (self.Shape == self.phenotypes[1]): a = batch.number elif (self.Shape == self.phenotypes[2]): a = batch.type else: a = 0 if (self.Color == self.phenotypes[0]): b = 0 elif(self.Color == self.phenotypes[1]): b = batch.number elif(self.Color == self.phenotypes[2]): b = batch.type else: b = 0 ''' a = batch.type b = batch.number tmarker = shapes[a] bcolor = self.colors[b] for i in range(len(x1)): points.append((x1[i], y1[i])) plot0 = create_scatter_plot((x1, y1), marker=tmarker, color=getColor(bcolor)) if batch.isSelected: plot0.alpha = 1 plot0.alpha = 1 else: plot0.fill_alpha = 0.2 plot0.edge_alpha = 0.2 plot0.bgcolor = "white" plot0.border_visible = True if index == 0: value_mapper = plot0.value_mapper index_mapper = plot0.index_mapper add_default_grids(plot0) add_default_axes(plot0, vtitle='PCA Indices', htitle='PCA Scores') plot0.index_range.tight_bounds = False plot0.index_range.refresh() plot0.value_range.tight_bounds = False plot0.value_range.refresh() plot0.tools.append(PanTool(plot0)) zoom = ZoomTool(plot0, tool_mode="box", always_on=False, maintain_aspect_ratio=False) plot0.overlays.append(zoom) dragzoom = DragZoom(plot0, drag_button="right", maintain_aspect_ratio=False) plot0.tools.append(dragzoom) else: plot0.value_mapper = value_mapper value_mapper.range.add(plot0.value) plot0.index_mapper = index_mapper index_mapper.range.add(plot0.index) if batch.isSelected: Container.add(plot0) index = index + 1 self.RightPlot = Container