# Enthought library imports from chaco.shell import show, title, plot, pcolor, colormap, curplot from chaco.default_colormaps import jet # Crate some scalar data xs = linspace(0,10,200) ys = linspace(0,20,400) x,y = meshgrid(xs,ys) z = sin(x)*y # Create a pseudo-color-map pcolor(x,y,z) #change the color mapping colormap(jet) # Add some titles title("pseudo colormap image plot") # Add a custom tool - in this case, an ImageInspector from chaco.tools.api import ImageInspectorTool, ImageInspectorOverlay img_plot = curplot().plots.values()[0][0] tool = ImageInspectorTool(img_plot) img_plot.tools.append(tool) overlay = ImageInspectorOverlay(img_plot, image_inspector=tool, bgcolor="white", border_visible=True) img_plot.overlays.append(overlay) #This command is only necessary if running from command line show()
xs = linspace(0, 10, 200) ys = linspace(0, 20, 400) x, y = meshgrid(xs, ys) z = sin(x) * y # Create a pseudo-color-map pcolor(x, y, z, name='sin_x_times_y') # Change the color mapping colormap(jet) # Add some titles title("pseudo colormap image plot") # From the current plot object, grab the first plot img_plot = curplot().plots['sin_x_times_y'][0] # Add a custom tool - in this case, an ImageInspector from chaco.tools.api import ImageInspectorTool, ImageInspectorOverlay tool = ImageInspectorTool(img_plot) img_plot.tools.append(tool) overlay = ImageInspectorOverlay(img_plot, image_inspector=tool, bgcolor="white", border_visible=True) img_plot.overlays.append(overlay) # If running this from the command line and outside of a wxPython # application or process, the show() command is necessary to keep # the plot from disappearing instantly. If a wxPython mainloop
# Major library imports from numpy import linspace, pi, sin # Enthought library imports from chaco.shell import show, plot, title, curplot from chaco.scales.api import CalendarScaleSystem # Create some data numpoints = 100 x = linspace(-2 * pi, 2 * pi, numpoints) y1 = sin(x) # Create the dates import time now = time.time() dt = 24 * 3600 # data points are spaced by 1 day dates = linspace(now, now + numpoints * dt, numpoints) # Create some line plots plot(dates, y1, "b-", bgcolor="white") # Add some titles title("Plotting Dates") # Set the plot's horizontal axis to be a time scale curplot().x_axis.tick_generator.scale = CalendarScaleSystem() #This command is only necessary if running from command line show()
ys = linspace(0,20,400) x,y = meshgrid(xs,ys) z = sin(x)*y # Create a pseudo-color-map pcolor(x, y, z, name='sin_x_times_y') # Change the color mapping colormap(jet) # Add some titles title("pseudo colormap image plot") # From the current plot object, grab the first plot img_plot = curplot().plots['sin_x_times_y'][0] # Add a custom tool - in this case, an ImageInspector from chaco.tools.api import ImageInspectorTool, ImageInspectorOverlay tool = ImageInspectorTool(img_plot) img_plot.tools.append(tool) overlay = ImageInspectorOverlay(img_plot, image_inspector=tool, bgcolor="white", border_visible=True) img_plot.overlays.append(overlay) # If running this from the command line and outside of a wxPython # application or process, the show() command is necessary to keep # the plot from disappearing instantly. If a wxPython mainloop # is already running, then this command is not necessary.
# Major library imports from numpy import linspace, pi, sin # Enthought library imports from chaco.shell import show, plot, title, curplot from chaco.scales.api import CalendarScaleSystem # Create some data numpoints = 100 x = linspace(-2*pi, 2*pi, numpoints) y1 = sin(x) # Create the dates import time now = time.time() dt = 24 * 3600 # data points are spaced by 1 day dates = linspace(now, now + numpoints*dt, numpoints) # Create some line plots plot(dates, y1, "b-", bgcolor="white") # Add some titles title("Plotting Dates") # Set the plot's horizontal axis to be a time scale curplot().x_axis.tick_generator.scale = CalendarScaleSystem() #This command is only necessary if running from command line show()
# Create some data numpoints = 100 x = linspace(-2*pi, 2*pi, numpoints) y1 = sin(x) # Create the dates import time now = time.time() dt = 24 * 3600 # data points are spaced by 1 day dates = linspace(now, now + numpoints*dt, numpoints) # Create some line plots plot(dates, y1, "b-", bgcolor="white") # Add some titles title("Plotting Dates") current_plot = curplot() # Set the plot's horizontal axis to be a time scale current_plot.x_axis.tick_generator.scale = CalendarScaleSystem() zoom_tool = current_plot.overlays[2] pan_tool = current_plot.tools[0] zoom_tool.x_min_zoom_factor = float(1e-3) pan_tool.restrict_to_data = True # This command is only necessary if running from command line show()