def load_model(self): # model_file = osp.join(self.data_dir, 'max_miou.npz') model_file = osp.join(self.data_dir, 'max_depth_acc.npz') with open(osp.join(self.data_dir, 'model.txt'), 'r') as f: model_name = f.readline().rstrip() with open(osp.join(self.data_dir, 'n_class.txt'), 'r') as f: n_class = int(f.readline().rstrip()) self.n_class = n_class with open(osp.join(self.data_dir, 'num_view.txt'), 'r') as f: num_view = int(f.readline().rstrip()) self.num_view = num_view if model_name == 'FCN8sAtOnceInputRGBD': self.model = FCN8sAtOnceInputRGBD(n_class=n_class, masking=True, concat=True, no_bp_before_rgb_pool5=False) elif model_name == 'FCN8sAtOnceConcatAtOnce': self.model = FCN8sAtOnceConcatAtOnce(n_class=n_class, masking=True, no_bp_before_rgb_pool5=False) print('\nLoading trained model: {0}'.format(model_file)) S.load_npz(model_file, self.model) print('Finished loading trained model: {0}\n'.format(model_file)) if self.gpu >= 0: cuda.get_device_from_id(self.gpu).use() self.model.to_gpu() if LooseVersion(chainer.__version__) < LooseVersion('2.0.0'): self.model.train = False
def __init__(self): super().__init__() self.title = 'PyQt5 image - pythonspot.com' self.left = 300 self.top = 300 self.width = 900 self.height = 600 self.gen = network.Generator(depth=depth) serializers.load_npz(gen_path, self.gen) # file self.csv_file = [[random.random() for j in range(csv_len)]] self.vec2rand_model = load_model(vec2rand_model_path) # gpu using if gpu >= 0: cuda.get_device_from_id(0).use() self.gen.to_gpu() self.xp = self.gen.xp self.initUI() #generating image. z = self.xp.random.randn(1, 512, 1, 1).astype('f') x = self.gen(z, alpha=1.0) x = chainer.cuda.to_cpu(x.data) img = x[0].copy() utils.save_image(img, 'temp.jpg') _img = Image.open('temp.jpg') self.img = np.asarray(_img) self.initFigure() self.show()
def dump_bilm_embeddings(vocab_file, dataset_file, options_file, weight_file, outfile, gpu=-1, batchsize=32): with open(options_file, 'r') as fin: options = json.load(fin) max_word_length = options['char_cnn']['max_characters_per_token'] vocab = UnicodeCharsVocabulary(vocab_file, max_word_length) batcher = Batcher(vocab_file, max_word_length) model = Elmo(options_file, weight_file, num_output_representations=1, requires_grad=False, do_layer_norm=False, dropout=0.) if gpu >= 0: cuda.get_device_from_id(gpu).use() model.to_gpu() # (batch_size, timesteps, 50) # TODO(sosk): preencoding token embedding for acceleration with chainer.using_config("train", False), \ chainer.no_backprop_mode(): sentence_id = 0 n_lines = sum([1 for _ in open(dataset_file, 'r')]) with open(dataset_file, 'r') as fin, h5py.File(outfile, 'w') as fout: for minibatch in minibatch_iterator(tqdm.tqdm(fin, total=n_lines), batchsize): sentences = [line.strip().split() for line in minibatch] char_ids = batcher.batch_sentences(sentences, add_bos_eos=False) char_ids = model.xp.asarray(char_ids) mb_outs = model.forward(char_ids) mb_embedding_layers = mb_outs['elmo_layers'] # [(batch_size, max_sequence_length, embedding_dim), ..., x n_layers] # Note that embedding layers have already trushed bos & eos # But they contains padding mb_mask = mb_outs['mask'] mb_concat_embedding_layers = cuda.to_cpu( model.xp.stack( [mb_emb.array for mb_emb in mb_embedding_layers], axis=1)) # (batch_size, n_layers=3, max_sequence_length, embedding_dim) for mask, concat_embedding_layers in zip( mb_mask, mb_concat_embedding_layers): # remove pads length = int(mask.sum()) concat_embedding_layers = concat_embedding_layers[:, : length] # (n_layers=3, sequence_length, embedding_dim) ds = fout.create_dataset('{}'.format(sentence_id), concat_embedding_layers.shape, dtype='float32', data=concat_embedding_layers) sentence_id += 1
def __call__(self, x, test=False, finetune=False): """Invokes the forward propagation of BatchNormalization. BatchNormalization accepts additional arguments, which controls three different running mode. Args: x (Variable): Input variable. test (bool): If ``True``, BatchNormalization runs in testing mode; it normalizes the input using pre-computed statistics. finetune (bool): If ``finetune`` is ``True`` and ``test`` is ``False``, BatchNormalization runs in fine-tuning mode; it accumulates the input array to compute population statistics for normalization, and normalizes the input using batch statistics. If ``test`` is ``False``, then BatchNormalization runs in training mode; it computes moving averages of mean and variance for evaluation during training, and normalizes the input using batch statistics. """ if hasattr(self, 'gamma'): gamma = self.gamma else: with cuda.get_device_from_id(self._device_id): gamma = variable.Variable(self.xp.ones( self.avg_mean.shape, dtype=x.dtype), volatile='auto') if hasattr(self, 'beta'): beta = self.beta else: with cuda.get_device_from_id(self._device_id): beta = variable.Variable(self.xp.zeros( self.avg_mean.shape, dtype=x.dtype), volatile='auto') # Var is always ones with cuda.get_device_from_id(self._device_id): self.one_var = self.xp.ones(self.avg_mean.shape, dtype=x.dtype) if not test: if finetune: self.N += 1 decay = 1. - 1. / self.N else: decay = self.decay func = batch_normalization.BatchNormalizationFunction( self.eps, self.avg_mean, self.avg_var, True, decay, self.use_cudnn) ret = func(x, gamma, beta) self.avg_mean[:] = func.running_mean self.avg_var[:] = func.running_var else: # Use running average statistics or fine-tuned statistics. mean = variable.Variable(self.avg_mean, volatile='auto') #var = variable.Variable(self.avg_var, volatile='auto') var = variable.Variable(self.one_var, volatile='auto') ret = batch_normalization.fixed_batch_normalization( x, gamma, beta, mean, var, self.eps, self.use_cudnn) return ret
def load_model(self): n_class = len(self.train_dataset.class_names) if self.model_name == 'fcn32s': self.model = fcn.models.FCN32s(n_class=n_class) vgg = fcn.models.VGG16() vgg_path = vgg.download() S.load_npz(vgg_path, vgg) self.model.init_from_vgg16(vgg) elif self.model_name == 'fcn16s': self.model = fcn.models.FCN16s(n_class=n_class) fcn32s = fcn.models.FCN32s() fcn32s_path = fcn32s.download() S.load_npz(fcn32s_path, fcn32s) self.model.init_from_fcn32s(fcn32s_path, fcn32s) elif self.model_name == 'fcn8s': self.model = fcn.models.FCN8s(n_class=n_class) fcn16s = fcn.models.FCN16s() fcn16s_path = fcn16s.download() S.load_npz(fcn16s_path, fcn16s) self.model.init_from_fcn16s(fcn16s_path, fcn16s) elif self.model_name == 'fcn8s_at_once': self.model = fcn.models.FCN8sAtOnce(n_class=n_class) vgg = fcn.models.VGG16() vgg_path = vgg.download() S.load_npz(vgg_path, vgg) self.model.init_from_vgg16(vgg) else: raise ValueError( 'Unsupported model_name: {}'.format(self.model_name)) if self.gpu >= 0: cuda.get_device_from_id(self.gpu).use() self.model.to_gpu()
def generate(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', '-g', type=int, default=-1) parser.add_argument('--gen', type=str, default=None) parser.add_argument('--depth', '-d', type=int, default=0) parser.add_argument('--out', '-o', type=str, default='img/') parser.add_argument('--num', '-n', type=int, default=10) args = parser.parse_args() gen = network.Generator(depth=args.depth) print('loading generator model from ' + args.gen) serializers.load_npz(args.gen, gen) if args.gpu >= 0: cuda.get_device_from_id(0).use() gen.to_gpu() xp = gen.xp z1 = gen.z(1) z2 = gen.z(1) for i in range(args.num): print(i) p = i / (args.num - 1) z = z1 * p + z2 * (1 - p) x = gen(z, alpha=1.0) x = chainer.cuda.to_cpu(x.data) img = x[0].copy() filename = os.path.join(args.out, 'gen_%04d.png' % i) utils.save_image(img, filename)
def test(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', '-g', type=int, default=-1) parser.add_argument('--model', '-m', type=str, default=None) parser.add_argument('--id', '-i', type=int, default=0) parser.add_argument('--inf', type=int, default=10) parser.add_argument('--outf', type=int, default=3) args = parser.parse_args() test = dataset.UCSDped1Dataset(0, 200, args.inf, args.outf, "./ucsd_ped1_test.npy") model = convlstm.Model(n_input=2, size=[128, 64, 64]) if args.model != None: print("loading model from " + args.model) serializers.load_npz(args.model, model) x, t = test[args.id] x = np.expand_dims(x, 0) t = np.expand_dims(t, 0) if args.gpu >= 0: cuda.get_device_from_id(0).use() model.to_gpu() x = cuda.cupy.array(x) t = cuda.cupy.array(t) print(x.shape) print(t.shape) res = model(Variable(x), Variable(t)) print(res)
def __call__(self, c, h, x): """Returns new cell state and updated output of LSTM. Args: c (~chainer.Variable): Cell states of LSTM units. h (~chainer.Variable): Output at the previous time step. x (~chainer.Variable): A new batch from the input sequence. Returns: tuple of ~chainer.Variable: Returns ``(c_new, h_new)``, where ``c_new`` represents new cell state, and ``h_new`` is updated output of LSTM units. """ if self.upward.W.data is None: in_size = x.size // x.shape[0] with cuda.get_device_from_id(self._device_id): self.upward._initialize_params(in_size) self._initialize_params() lstm_in = self.upward(x) if h is not None: lstm_in += self.lateral(h) if c is None: xp = self.xp with cuda.get_device_from_id(self._device_id): c = variable.Variable( xp.zeros((x.shape[0], self.state_size), dtype=x.dtype)) return lstm.lstm(c, lstm_in)
def __init__(self, arch=None, weights_file=None, model=None, device=-1, precise=False): self.arch = arch self.precise = precise if model is not None: self.model = model else: print('[INFO] [DetectHuman]: LOADING POSE MODEL', flush=True) self.model = params['archs'][arch]() if weights_file: serializers.load_npz(weights_file, self.model) self.device = device if self.device >= 0: cuda.get_device_from_id(device).use() self.model.to_gpu() # create gaussian filter self.gaussian_kernel = self.create_gaussian_kernel( params['gaussian_sigma'], params['ksize'])[None, None] self.gaussian_kernel = cuda.to_gpu(self.gaussian_kernel)
def set_cuda(self, gpu_id=0, deterministic=False, benchmark=True): """Set model to the GPU version. Args: gpu_id (int) deterministic (bool, optional): benchmark (bool, optional): not used """ if self.use_cuda: chainer.config.type_check = False if deterministic: chainer.config.cudnn_deterministic = True logger.info('GPU deterministic mode (no cudnn)') else: chainer.config.cudnn_deterministic = False logger.info('GPU mode') cuda.get_device_from_id(gpu_id).use() self.to_gpu() if not chainer.cuda.available: raise ValueError('cuda is not available') if not chainer.cuda.cudnn_enabled: raise ValueError('cudnn is not available') else: logger.info('CPU mode')
def __call__(self, orig_img): orig_img = orig_img.copy() if self.precise: return self.detect_precise(orig_img) orig_img_h, orig_img_w, _ = orig_img.shape input_w, input_h = self.compute_optimal_size(orig_img, params['inference_img_size']) map_w, map_h = self.compute_optimal_size(orig_img, params['heatmap_size']) resized_image = cv2.resize(orig_img, (input_w, input_h)) x_data = self.preprocess(resized_image) if self.device >= 0: x_data = cuda.to_gpu(x_data) h1s, h2s = self.model(x_data) pafs = F.resize_images(h1s[-1], (map_h, map_w)).data[0] heatmaps = F.resize_images(h2s[-1], (map_h, map_w)).data[0] if self.device >= 0: pafs = pafs.get() cuda.get_device_from_id(self.device).synchronize() all_peaks = self.compute_peaks_from_heatmaps(heatmaps) if len(all_peaks) == 0: return np.empty((0, len(JointType), 3)), np.empty(0) all_connections = self.compute_connections(pafs, all_peaks, map_w, params) subsets = self.grouping_key_points(all_connections, all_peaks, params) all_peaks[:, 1] *= orig_img_w / map_w all_peaks[:, 2] *= orig_img_h / map_h poses = self.subsets_to_pose_array(subsets, all_peaks) scores = subsets[:, -2] return poses, scores
def __call__(self, x, gamma_=None, beta_=None): if hasattr(self, 'gamma'): gamma = self.gamma elif gamma_ is not None: gamma = gamma_ else: with cuda.get_device_from_id(self._device_id): gamma = variable.Variable( self.xp.ones(self.avg_mean.shape, dtype=x.dtype)) if hasattr(self, 'beta'): beta = self.beta elif beta_ is not None: beta = beta_ else: with cuda.get_device_from_id(self._device_id): beta = variable.Variable( self.xp.zeros(self.avg_mean.shape, dtype=x.dtype)) decay = self.decay if (not configuration.config.train) and self.valid_test: mean = variable.Variable(self.avg_mean) var = variable.Variable(self.avg_var) ret = fixed_instance_normalization(x, gamma, beta, mean, var, self.eps) else: func = InstanceNormalizationFunction(self.eps, self.avg_mean, self.avg_var, decay) ret = func(x, gamma, beta) self.avg_mean = func.running_mean self.avg_var = func.running_var return ret
def load_model(self): # model_file = osp.join(self.data_dir, 'max_miou.npz') model_file = osp.join(self.data_dir, 'max_depth_acc.npz') with open(osp.join(self.data_dir, 'model.txt'), 'r') as f: model_name = f.readline().rstrip() with open(osp.join(self.data_dir, 'n_class.txt'), 'r') as f: n_class = int(f.readline().rstrip()) self.n_class = n_class with open(osp.join(self.data_dir, 'num_view.txt'), 'r') as f: num_view = int(f.readline().rstrip()) self.num_view = num_view if model_name == 'FCN8sMultiViewMirrorSegmentationDepthEstimation': self.model = FCN8sMultiViewMirrorSegmentationDepthEstimation( n_class=n_class, num_view=num_view) print('\nLoading trained model: {0}'.format(model_file)) S.load_npz(model_file, self.model) print('Finished loading trained model: {0}\n'.format(model_file)) if self.gpu >= 0: cuda.get_device_from_id(self.gpu).use() self.model.to_gpu() if LooseVersion(chainer.__version__) < LooseVersion('2.0.0'): self.model.train = False
def __init__(self): super(SoleAffordanceSegmentation, self).__init__() affordance = rospy.get_param('~affordance') pretrained_model, modal, out_channels = get_pretrained_model( affordance ) self.out_channels = out_channels gpu = rospy.get_param('~gpu', 0) model = grasp_fusion.models.FCN8sVGG16Sigmoid( out_channels=out_channels, pretrained_model=pretrained_model, modal=modal, ) if gpu >= 0: cuda.get_device_from_id(gpu).use() model.to_gpu() self.model = model self.pub_label = self.advertise('~output/label', Image, queue_size=1) self.pub_prob = self.advertise('~output/prob', Image, queue_size=1) self.pub_viz = self.advertise('~output/viz', Image, queue_size=1)
def generate(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', '-g', type=int, default=-1) parser.add_argument('--sgen', type=str, default=None) parser.add_argument('--depth', '-d', type=int, default=5) parser.add_argument('--out', '-o', type=str, default='img/') parser.add_argument('--num', '-n', type=int, default=100) args = parser.parse_args() sgen = network.StyleBasedGenerator(depth=args.depth) print('loading generator model from ' + args.sgen) serializers.load_npz(args.sgen, sgen) if args.gpu >= 0: cuda.get_device_from_id(0).use() sgen.to_gpu() xp = sgen.xp for i in range(args.num): print(i) z = sgen.make_latent(1) x = sgen(z, alpha=1.0) x = chainer.cuda.to_cpu(x.data) img = x[0].copy() filename = os.path.join(args.out, '%d.png' % (i + 1)) utils.save_image(img, filename)
def __call__(self, x, finetune=False): if hasattr(self, 'gamma'): gamma = self.gamma else: with cuda.get_device_from_id(self._device_id): gamma = variable.Variable( self.xp.ones(self.avg_mean.shape, dtype=x.dtype)) if hasattr(self, 'beta'): beta = self.beta else: with cuda.get_device_from_id(self._device_id): beta = variable.Variable( self.xp.zeros(self.avg_mean.shape, dtype=x.dtype)) if chainer.configuration.config.train: if finetune: self.N += 1 decay = 1. - 1. / self.N else: decay = self.decay func = MultiNodeBatchNormalizationFunction(self.comm, self.eps, self.avg_mean, self.avg_var, decay) ret = func(x, gamma, beta) self.avg_mean[:] = func.running_mean self.avg_var[:] = func.running_var else: # Use running average statistics or fine-tuned statistics. mean = variable.Variable(self.avg_mean) var = variable.Variable(self.avg_var) ret = batch_normalization.fixed_batch_normalization( x, gamma, beta, mean, var, self.eps) return ret
def __call__(self, x, finetune=False): if hasattr(self, 'gamma'): gamma = self.gamma else: with cuda.get_device_from_id(self._device_id): gamma = variable.Variable(self.xp.ones( self.avg_mean.shape, dtype=x.dtype)) if hasattr(self, 'beta'): beta = self.beta else: with cuda.get_device_from_id(self._device_id): beta = variable.Variable(self.xp.zeros( self.avg_mean.shape, dtype=x.dtype)) if chainer.configuration.config.train: if finetune: self.N += 1 decay = 1. - 1. / self.N else: decay = self.decay func = MultiNodeBatchNormalizationFunction( self.comm, self.eps, self.avg_mean, self.avg_var, decay) ret = func(x, gamma, beta) self.avg_mean[:] = func.running_mean self.avg_var[:] = func.running_var else: # Use running average statistics or fine-tuned statistics. mean = variable.Variable(self.avg_mean) var = variable.Variable(self.avg_var) ret = batch_normalization.fixed_batch_normalization( x, gamma, beta, mean, var, self.eps) return ret
def __init__(self, arch=None, weights_file=None, model=None, device=-1): # test # self.model = params['archs']['nn1']() # serializers.load_npz('result/nn1/model_iter_50000', self.model) print('Loading PoseNet...') self.model = params['archs']['posenet']() serializers.load_npz('models/coco_posenet.npz', self.model) # if model is not None: # self.model = model # else: # # load model # print('Loading PoseNet...') # self.model = params['archs'][arch]() # if weights_file: # serializers.load_npz(weights_file, self.model) self.device = device if self.device >= 0: cuda.get_device_from_id(device).use() self.model.to_gpu() # create gaussian filter ksize = params['ksize'] kernel = cuda.to_gpu( self.create_gaussian_kernel(sigma=params['gaussian_sigma'], ksize=ksize)) self.gaussian_kernel = kernel
def main(): default_model_file = osp.join(here, 'data/G_horse2zebra_from_pytorch.npz') default_out_file = osp.join(here, 'logs/create_horse2zebra.gif') parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('video_file', help='Video file of horse.') parser.add_argument('-g', '--gpu', type=int, default=0, help='GPU id.') parser.add_argument('-m', '--model-file', default=default_model_file, help='Model file.') parser.add_argument('-o', '--out-file', default=default_out_file, help='Output video file.') args = parser.parse_args() print('GPU id: {:d}'.format(args.gpu)) print('Model file: {:s}'.format(args.model_file)) print('Video file: {:s}'.format(args.video_file)) print('Output file: {:s}'.format(args.out_file)) chainer.global_config.train = False chainer.global_config.enable_backprop = False model = chainer_cyclegan.models.ResnetGenerator() chainer.serializers.load_npz(args.model_file, model) if args.gpu >= 0: cuda.get_device_from_id(args.gpu).use() model.to_gpu() batch_size = 1 video = imageio.get_reader(args.video_file) writer = imageio.get_writer(args.out_file) for img in tqdm.tqdm(video): img_org = img.copy() img = cv2.resize(img, (256, 256)) xi = img.astype(np.float32) xi = (xi / 255) * 2 - 1 xi = xi.transpose(2, 0, 1) x = np.repeat(xi[None, :, :, :], batch_size, axis=0) if args.gpu >= 0: x = cuda.to_gpu(x) y = model(x) yi = y[0].array yi = cuda.to_cpu(yi) yi = yi.transpose(1, 2, 0) yi = (yi + 1) / 2 * 255 out = yi.astype(np.uint8) out = cv2.resize(out, (img_org.shape[1], img_org.shape[0])) writer.append_data(np.hstack([img_org, out])) print('Wrote video: {:s}'.format(args.out_file))
def update_core(self): train_iter = self.get_iterator('main') optimizer = self.get_optimizer('main') batch = train_iter.next() t_data = self.converter(batch, self.device) B = t_data.shape[0] y_data = self.func(B) B, C, H, W = t_data.shape[:4] y_data = F.broadcast_to(y_data, (B, C, H, W)) loss = compute_loss(y_data, t_data) reporter.report({ 'main/loss': loss, 'pos/light_x': self.model.data[0], 'pos/light_y': self.model.data[1], 'pos/light_z': self.model.data[2] }) y_data = y_data.data if self.device >= 0: y_data = y_data.get() cuda.get_device_from_id(self.device).synchronize() img = y_data[0] img = np.transpose(img, (1, 2, 0)) img = np.clip(img, 0, 1) img = (img * 255).astype(np.uint8) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) save_progress_image(self.odir, self.count, img) optimizer.target.cleargrads() loss.backward() optimizer.update() self.count += 1
def generate(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', '-g', type=int, default=-1) parser.add_argument('--model', '-m', type=str, default=None) parser.add_argument('--id', '-i', type=int, default=0) parser.add_argument('--inf', type=int, default=10) parser.add_argument('--outf', type=int, default=10) args = parser.parse_args() test = dataset.MovingMnistDataset(0, 10000, args.inf, args.outf) model = network.MovingMnistNetwork(sz=[128, 64, 64], n=2, directory="img/") if args.model != None: print( "loading model from " + args.model ) serializers.load_npz(args.model, model) x, t = test[args.id] x = np.expand_dims(x, 0) t = np.expand_dims(t, 0) if args.gpu >= 0: cuda.get_device_from_id(0).use() model.to_gpu() x = cuda.cupy.array(x) t = cuda.cupy.array(t) res = model(Variable(x), Variable(t))
def __init__(self, arch=None, weights_file=None, model=None, device=-1): # test # self.model = params['archs']['nn1']() # serializers.load_npz('result/nn1/model_iter_50000', self.model) print('Loading PoseNet...') self.model = params['archs']['posenet']() serializers.load_npz('models/coco_posenet.npz', self.model) # if model is not None: # self.model = model # else: # # load model # print('Loading PoseNet...') # self.model = params['archs'][arch]() # if weights_file: # serializers.load_npz(weights_file, self.model) self.device = device if self.device >= 0: cuda.get_device_from_id(device).use() self.model.to_gpu() # create gaussian filter ksize = params['ksize'] kernel = cuda.to_gpu(self.create_gaussian_kernel(sigma=params['gaussian_sigma'], ksize=ksize)) self.gaussian_kernel = kernel
def __init__(self, ds_path, spec_file_name, layer_name, box_type, window_size, model_param_file_path, plog_path, gpu_id): """ Constructor Args: ds_path (str): a dataset path spec_file_name (str): a dataset spec file name layer_name (str): a layer name box_type (str): a type of boxes - 'tbox' or 'ebox' model_param_file_path (str): a model parameter file path gpu_id (int): GPU ID (-1 for CPU) """ # set dataset self.ds = TripDataset(ds_path, spec_file_name, layer_name, box_type) # check dataset self.ds_length = self.ds.get_length() # window size self.window_size = window_size # set gpu self.gpu_id = gpu_id if self.gpu_id >= 0: cuda.get_device_from_id(self.gpu_id).use() # set model self.set_model(model_param_file_path) # prediction log file path self.plog_path = plog_path self.plogf = None
def __init__(self): super(AffordanceSegmentation, self).__init__() affordance = rospy.get_param('~affordance') pretrained_model, modal, out_channels = get_pretrained_model( affordance) gpu = rospy.get_param('~gpu', 0) self.lock = Lock() # rospy.set_param('~always_subscribe', True) model = grasp_fusion.models.FCN8sVGG16Sigmoid( out_channels=out_channels, pretrained_model=pretrained_model, modal=modal, ) if gpu >= 0: cuda.get_device_from_id(gpu).use() model.to_gpu() self.model = model self.pub_label = self.advertise('~output/label', Image, queue_size=1) self.pub_prob = self.advertise('~output/prob', Image, queue_size=1) self.pub_viz = self.advertise('~output/viz', Image, queue_size=1) self._prob = None self.srv_reset = rospy.Service('~reset', Empty, self.reset_callback)
def __init__(self, model, optimizer, obs_normalizer=None, update_interval=3072, minibatch_size=3072, epochs=1, entropy_coef=1e-3, loss_decay=0.99, entropy_decay=0.99, discriminator_value_offset=1e-8, noisy_label=False, noisy_label_range=0.3, gpu=None): self.model = model self.optimizer = optimizer self.obs_normalizer = obs_normalizer if gpu is not None and gpu >= 0: cuda.get_device_from_id(gpu).use() self.model.to_gpu(device=gpu) if obs_normalizer is not None: self.obs_normalizer.to_gpu(device=gpu) self.xp = self.model.xp self.epochs = epochs self.update_interval = update_interval self.minibatch_size = minibatch_size self.epochs = epochs self.entropy_coef = entropy_coef self.loss_decay = loss_decay self.entropy_decay = entropy_decay self.average_loss = 0. self.accuracy_gen = 0. self.accuracy_exp = 0. self.average_entropy = 0. self.discriminator_value_offset = discriminator_value_offset self.noisy_label = noisy_label self.noisy_label_range = noisy_label_range self._reset_trajectories()
def main(): args = parse_args() model = VGG16(pretrained_model='imagenet') image = cv2.imread(args.image_path) image_size = (224, 224) image = cv2.resize(image, image_size) if args.gpu >= 0: cuda.get_device_from_id(args.gpu).use() model.to_gpu() xp = cuda.cupy else: xp = np x = np.float32(image) x = x.transpose((2, 0, 1))[np.newaxis, ::-1, :, :] x -= model.mean x = xp.asarray(x) y_grad = xp.zeros((1, 1000), dtype=np.float32) y_grad[0, args.label] = 1.0 gcam = gradcam.gradcam(model, x, [model.conv5_3.conv, F.relu], y_grad=y_grad) gcam = cuda.to_cpu(gcam[0]) heatmap_image = gradcam.heatmap(gcam, image_size) cv2.imwrite(args.heatmap_path, heatmap_image) overlay_image = gradcam.overlay(image, gcam) cv2.imwrite(args.overlay_path, overlay_image)
def __call__(self, x, **kwargs): argument.check_unexpected_kwargs( kwargs, test='test argument is not supported anymore. ' 'Use chainer.using_config') finetune, = argument.parse_kwargs(kwargs, ('finetune', False)) if hasattr(self, 'gamma'): gamma = self.gamma else: with cuda.get_device_from_id(self._device_id): gamma = variable.Variable(self.xp.ones( self.avg_mean.shape, dtype=x.dtype)) if hasattr(self, 'beta'): beta = self.beta else: with cuda.get_device_from_id(self._device_id): beta = variable.Variable(self.xp.zeros( self.avg_mean.shape, dtype=x.dtype)) if configuration.config.train: if finetune: self.N += 1 decay = 1. - 1. / self.N else: decay = self.decay ret = batch_normalization( x, gamma, beta, eps=self.eps, running_mean=self.avg_mean, running_var=self.avg_var, decay=decay) else: # Use running average statistics or fine-tuned statistics. mean = variable.Variable(self.avg_mean) var = variable.Variable(self.avg_var) ret = fixed_batch_normalization( x, gamma, beta, mean, var, self.eps) return ret
def __init__(self, arch=None, weights_file=None, model=None, device=-1, precise=False): self.arch = arch self.precise = precise if model is not None: self.model = model else: print('Loading the model...') self.model = params['archs'][arch]() if weights_file: serializers.load_npz(weights_file, self.model) self.device = 0 if self.device >= 0: cuda.get_device_from_id(device).use() self.model.to_gpu() self.gaussian_kernel = self.create_gaussian_kernel( params['gaussian_sigma'], params['ksize'])[None, None] self.gaussian_kernel = cuda.to_gpu(self.gaussian_kernel)
def __call__(self,img): edit_img = img.copy() img_h,img_w ,_ = edit_img.shape #画像とheatmapの大きさの最適化(stride=8の倍数にする) input_w,input_h = self.compute_optimal_size(edit_img,constants['img_size']) map_w,map_h = self.compute_optimal_size(edit_img,constants['heatmap_size']) #画像サイズの更新と学習器に入れるためにデータの編集 resized_image = cv2.resize(edit_img, (input_w, input_h)) x_data = self.preprocess(resized_image) #GPUへの適用 if self.device >= 0: x_data = cuda.to_gpu(x_data) #学習器からの出力(全ステージから) Ss,Ls = self.model(x_data) #最終ステージの物のみ取り出す heatmaps = F.resize_images(Ss[-1], (map_h, map_w)).data[0] pafs = F.resize_images(Ls[-1], (map_h, map_w)).data[0] if self.device >= 0: pafs = pafs.get() cuda.get_device_from_id(self.device).synchronize() #heatmapからPeakを計算する all_peaks = self.compute_peaks_from_heatmaps(heatmaps) if len(all_peaks) == 0: return np.empty((0, len(JointType), 3)), np.empty(0) #peakとpafからConnectionを計算する all_connections = self.compute_connections(pafs, all_peaks, map_w, constants) #subsetの作成 subsets = self.grouping_key_points(all_connections, all_peaks, constants) all_peaks[:, 1] *= img_w / map_w all_peaks[:, 2] *= img_h / map_h #poseの計算 poses = self.subsets_to_pose_array(subsets, all_peaks) return poses
def main(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', '-g', type=int, default=-1) parser.add_argument('--model', '-m', type=str, default="./results/model") parser.add_argument('--begin', '-b', type=int, default=0) args = parser.parse_args() # Set up a neural network to train. _, test_x = get_cifar10(withlabel=False, ndim=3) test = LoadDataset(test_x) model = network.CAE(3,3, return_out=True) if args.model != None: print( "loading model from " + args.model ) serializers.load_npz(args.model, model) # Show 64 images fig = plt.figure(figsize=(6,6)) plt.title("Original images: first rows,\n Predicted images: second rows") plt.axis('off') plt.tight_layout() pbar = tqdm(total=32) for i in range(4): for j in range(8): ax = fig.add_subplot(8, 8, i*16+j+1, xticks=[], yticks=[]) x, t = test[i*8+j] xT = x.transpose(1, 2, 0) ax.imshow(xT, cmap=plt.cm.bone, interpolation='nearest') x = np.expand_dims(x, 0) t = np.expand_dims(t, 0) if args.gpu >= 0: cuda.get_device_from_id(0).use() model.to_gpu() x = cuda.cupy.array(x) t = cuda.cupy.array(t) predicted, loss = model(Variable(x), Variable(t)) #print(predicted.shape) #print(loss) predicted = F.transpose(predicted[0], (1, 2, 0)) predicted = cuda.to_cpu(predicted.data) #Variable to numpy predicted = predicted * 255 predicted = predicted.astype(np.uint8) ax = fig.add_subplot(8, 8, i*16+j+9, xticks=[], yticks=[]) ax.imshow(predicted, cmap=plt.cm.bone, interpolation='nearest') pbar.update(1) pbar.close() plt.savefig("result.png") plt.show() plt.close()
def __call__(self, batch, device=None, padding=None): """Concatenate data and transfer them to GPU asynchronously. See also :func:`chainer.dataset.concat_examples`. Args: batch (list): A list of examples. device (int): Device ID to which each array is sent. padding: Scalar value for extra elements. Returns: Array, a tuple of arrays, or a dictionary of arrays. The type depends on the type of each example in the batch. """ if len(batch) == 0: raise ValueError('batch is empty') first_elem = batch[0] if len(self._conveyor) == 0: self._device = device # device is set at first call if device is not None and device >= 0 and self._stream is None: with cuda.get_device_from_id(device): self._stream = cuda.Stream(non_blocking=True) if device is not self._device: raise ValueError('device is different') with cuda.get_device_from_id(device): if isinstance(first_elem, tuple): result = [] if not isinstance(padding, tuple): padding = [padding] * len(first_elem) for i in six.moves.range(len(first_elem)): self._conveyor[i].put( _concat_arrays([example[i] for example in batch], padding[i])) for i in six.moves.range(len(first_elem)): result.append(self._conveyor[i].get()) return tuple(result) elif isinstance(first_elem, dict): result = {} if not isinstance(padding, dict): padding = {key: padding for key in first_elem} for key in first_elem: self._conveyor[key].put( _concat_arrays([example[key] for example in batch], padding[key])) for key in first_elem: result[key] = self._conveyor[key].get() return result else: return to_device(device, _concat_arrays(batch, padding))
def _loss(X_, Y_, verbose=1, beta=1, weights=None, cpu=False, **kwargs): """CUDA ready: implementation based on NumPy/CuPy""" if cuda.available and not cpu: # if CUDA is installed on the machine, use it. gpu = True if cuda.get_array_module(X_).__name__ == 'cupy': # if At_ is on GPU # make sure it is on the same device as Bt_ assert X_.data.device.id == Y_.data.device.id # use that Device as main device cuda.get_device_from_id(X_.data.device.id).use() # set pointers X = X_ Y = Y_ print(X.device.id) else: # At_ is a CPU array print('Copying to GPU.') X = cuda.to_gpu(X_, device=2) Y = cuda.to_gpu(Y_, device=2) cuda.get_device_from_id(2).use() else: # CUDA is not installed, run on CPU gpu = False # set pointers X = X_ Y = Y_ xp = cuda.get_array_module(X) # Compute objective value and grad at Z. X = X.reshape(Y.shape[:-1]) d1, d2, d3, m = X.shape nb = Y.shape[-1] if weights is None: weights = np.ones(nb) G = xp.zeros((d1, d2, d3, m)) d = 0 for i in range(nb): if verbose > 1: print('computing distances and gradients for shape %d' % (i + 1)) M_gpu, G_gpu = sinkhorn_dist_grad(X, Y[:, :, :, :, i], verbose=verbose, **kwargs) if gpu: if verbose > 1: print('_ copying to cpu') M_cpu = cuda.to_cpu(M_gpu) else: M_cpu = M_gpu d_cpu, D_cpu = soft_dtw(M_cpu, beta) D_bar_cpu = soft_dtw_grad(D_cpu, beta) if gpu: if verbose > 1: print('_ copying to gpu') D_bar_gpu = cuda.to_gpu(D_bar_cpu, device=G_gpu.device.id) else: D_bar_gpu = D_bar_cpu final_G_gpu = chain_rule(D_bar_gpu, G_gpu) G += weights[i] * final_G_gpu d += weights[i] * d_cpu return d, G
def __call__(self, x, **kwargs): """__call__(self, x, finetune=False) Invokes the forward propagation of BatchNormalization. In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation during training, and normalizes the input using batch statistics. .. warning:: ``test`` argument is not supported anymore since v2. Instead, use ``chainer.using_config('train', False)``. See :func:`chainer.using_config`. Args: x (Variable): Input variable. finetune (bool): If it is in the training mode and ``finetune`` is ``True``, BatchNormalization runs in fine-tuning mode; it accumulates the input array to compute population statistics for normalization, and normalizes the input using batch statistics. """ argument.check_unexpected_kwargs( kwargs, test='test argument is not supported anymore. ' 'Use chainer.using_config') finetune, = argument.parse_kwargs(kwargs, ('finetune', False)) if hasattr(self, 'gamma'): gamma = self.gamma else: with cuda.get_device_from_id(self._device_id): gamma = variable.Variable(self.xp.ones( self.avg_mean.shape, dtype=x.dtype)) if hasattr(self, 'beta'): beta = self.beta else: with cuda.get_device_from_id(self._device_id): beta = variable.Variable(self.xp.zeros( self.avg_mean.shape, dtype=x.dtype)) if configuration.config.train: if finetune: self.N += 1 decay = 1. - 1. / self.N else: decay = self.decay ret = functions.batch_normalization( x, gamma, beta, eps=self.eps, running_mean=self.avg_mean, running_var=self.avg_var, decay=decay) else: # Use running average statistics or fine-tuned statistics. mean = variable.Variable(self.avg_mean) var = variable.Variable(self.avg_var) ret = functions.fixed_batch_normalization( x, gamma, beta, mean, var, self.eps) return ret
def test_forward_gpu_multi(self): with cuda.get_device_from_id(0): self.link.to_gpu() x1 = cuda.to_gpu(self.x1) x2 = cuda.to_gpu(self.x2) x3 = cuda.to_gpu(self.x3) with cuda.get_device_from_id(1): self.check_forward(x1, x2, x3)
def test_copydata_gpu_to_another_gpu(self): cp = cuda.cupy with cuda.get_device_from_id(0): data1 = cp.zeros(3, dtype=np.float32) expect = cp.ones(3, dtype=np.float32) with cuda.get_device_from_id(1): data2 = cp.ones(3, dtype=np.float32) self.check_copydata(data1, data2, expect)
def test_addgrad_gpu_to_another_gpu(self): cp = cuda.cupy with cuda.get_device_from_id(1): a = cp.full(3, 10, dtype=np.float32) with cuda.get_device_from_id(0): b = cp.full(3, 20, dtype=np.float32) c = cp.full(3, 30, dtype=np.float32) self.check_addgrad(a, b, c)
def test_forward_gpu_multi(self): with cuda.get_device_from_id(0): self.link.to_gpu() c = cuda.to_gpu(self.c) h = cuda.to_gpu(self.h) x = cuda.to_gpu(self.x) with cuda.get_device_from_id(1): self.check_forward(c, h, x)
def test_addgrad_gpu_to_another_gpu_none_dst_dev1(self): cp = cuda.cupy with cuda.get_device_from_id(1): a = cp.full(3, 20, dtype=np.float32) with cuda.get_device_from_id(0): b = cp.full(3, 10, dtype=np.float32) c = cp.full(3, 20, dtype=np.float32) with cuda.get_device_from_id(1): self.check_addgrad(a, b, c, clear_dst_grad=True)
def test_zerograds_fill_multi_gpu(self): cupy = cuda.cupy with cuda.get_device_from_id(1): a = chainer.Variable(cupy.empty(3, dtype=np.float32)) a.grad = cupy.empty_like(a.data) a.zerograd() self.assertEqual(int(a.grad.device), 1) with cuda.get_device_from_id(1): g_expect = cupy.zeros_like(a.data) cupy.testing.assert_array_equal(a.grad, g_expect)
def dump_bilm_embeddings(vocab_file, dataset_file, options_file, weight_file, outfile, gpu=-1, batchsize=32): with open(options_file, 'r') as fin: options = json.load(fin) max_word_length = options['char_cnn']['max_characters_per_token'] vocab = UnicodeCharsVocabulary(vocab_file, max_word_length) batcher = Batcher(vocab_file, max_word_length) model = Elmo( options_file, weight_file, num_output_representations=1, requires_grad=False, do_layer_norm=False, dropout=0.) if gpu >= 0: cuda.get_device_from_id(gpu).use() model.to_gpu() # (batch_size, timesteps, 50) # TODO(sosk): preencoding token embedding for acceleration with chainer.using_config("train", False), \ chainer.no_backprop_mode(): sentence_id = 0 n_lines = sum([1 for _ in open(dataset_file, 'r')]) with open(dataset_file, 'r') as fin, h5py.File(outfile, 'w') as fout: for minibatch in minibatch_iterator(tqdm.tqdm(fin, total=n_lines), batchsize): sentences = [line.strip().split() for line in minibatch] char_ids = batcher.batch_sentences( sentences, add_bos_eos=False) char_ids = model.xp.asarray(char_ids) mb_outs = model.forward(char_ids) mb_embedding_layers = mb_outs['elmo_layers'] # [(batch_size, max_sequence_length, embedding_dim), ..., x n_layers] # Note that embedding layers have already trushed bos & eos # But they contains padding mb_mask = mb_outs['mask'] mb_concat_embedding_layers = cuda.to_cpu( model.xp.stack([mb_emb.array for mb_emb in mb_embedding_layers], axis=1)) # (batch_size, n_layers=3, max_sequence_length, embedding_dim) for mask, concat_embedding_layers in zip(mb_mask, mb_concat_embedding_layers): # remove pads length = int(mask.sum()) concat_embedding_layers = concat_embedding_layers[:, :length] # (n_layers=3, sequence_length, embedding_dim) ds = fout.create_dataset( '{}'.format(sentence_id), concat_embedding_layers.shape, dtype='float32', data=concat_embedding_layers ) sentence_id += 1
def test_zerograds_multi_gpu(self): cupy = cuda.cupy with cuda.get_device_from_id(1): a = chainer.Variable(cupy.empty(3, dtype=np.float32)) with testing.assert_warns(DeprecationWarning): a.zerograd() self.assertIsNot(a.grad, None) self.assertEqual(int(a.grad.device), 1) with cuda.get_device_from_id(1): g_expect = cupy.zeros_like(a.data) cupy.testing.assert_array_equal(a.grad, g_expect)
def dump_token_embeddings(vocab_file, options_file, weight_file, outfile, gpu=-1, batchsize=128): ''' Given an input vocabulary file, dump all the token embeddings to the outfile. The result can be used as the embedding_weight_file when constructing a BidirectionalLanguageModel. ''' with open(options_file, 'r') as fin: options = json.load(fin) max_word_length = options['char_cnn']['max_characters_per_token'] vocab = UnicodeCharsVocabulary(vocab_file, max_word_length) batcher = Batcher(vocab_file, max_word_length) model = Elmo( options_file, weight_file, num_output_representations=1, requires_grad=False, do_layer_norm=False, dropout=0.) tokens = [vocab.id_to_word(i) for i in range(vocab.size)] n_tokens = len(tokens) # (batch_size, timesteps, 50) if gpu >= 0: cuda.get_device_from_id(gpu).use() model.to_gpu() all_embeddings = [] with chainer.using_config("train", False), \ chainer.no_backprop_mode(): for minibatch in minibatch_iterator(tqdm.tqdm(tokens, total=n_tokens), batchsize): char_ids = batcher.batch_sentences([minibatch], add_bos_eos=False) char_ids = model.xp.asarray(char_ids) # to gpu embeddings = model._elmo_lstm._token_embedder\ .forward(char_ids)['token_embedding'] # (batch_size, sequence_length + 2, embedding_dim) embeddings = embeddings[:, 1:-1] # del bos and eos embeddings = embeddings[0] embeddings = cuda.to_cpu(embeddings.array) all_embeddings.append(embeddings) all_embeddings = numpy.concatenate(all_embeddings, axis=0) with h5py.File(outfile, 'w') as fout: ds = fout.create_dataset( 'embedding', all_embeddings.shape, dtype='float32', data=all_embeddings)
def __init__(self, arch=None, weights_file=None, model=None, device=-1): print('Loading FaceNet...') self.model = params['archs'][arch]() serializers.load_npz(weights_file, self.model) self.device = device if self.device >= 0: cuda.get_device_from_id(device).use() self.model.to_gpu() # create gaussian filter ksize = params['ksize'] kernel = cuda.to_gpu(self.create_gaussian_kernel(sigma=params['gaussian_sigma'], ksize=ksize)) self.gaussian_kernel = kernel
def __call__(self, x): """Updates the internal state and returns the LSTM outputs. Args: x (~chainer.Variable): A new batch from the input sequence. Returns: ~chainer.Variable: Outputs of updated LSTM units. """ if self.upward.has_uninitialized_params: with cuda.get_device_from_id(self._device_id): in_size = x.size // x.shape[0] self.upward._initialize_params(in_size) self._initialize_params() batch = x.shape[0] lstm_in = self.upward(x) h_rest = None if self.h is not None: h_size = self.h.shape[0] if batch == 0: h_rest = self.h elif h_size < batch: msg = ('The batch size of x must be equal to or less than' 'the size of the previous state h.') raise TypeError(msg) elif h_size > batch: h_update, h_rest = split_axis.split_axis( self.h, [batch], axis=0) lstm_in += self.lateral(h_update) else: lstm_in += self.lateral(self.h) if self.c is None: xp = self.xp with cuda.get_device_from_id(self._device_id): self.c = variable.Variable( xp.zeros((batch, self.state_size), dtype=x.dtype), volatile='auto') self.c, y = lstm.lstm(self.c, lstm_in) if h_rest is None: self.h = y elif len(y.data) == 0: self.h = h_rest else: self.h = concat.concat([y, h_rest], axis=0) return y
def _train_for_auxiliary_task(self, x_l0, x_l1, y_l, x_u0, x_u1): # Compute gradients y_pred0 = self.model(x_u0, self.model_params) y_pred1 = self.model(x_u1, self.model_params) loss_rc = self.rc_loss(y_pred0, y_pred1) self._cleargrads() loss_rc.backward(retain_grad=True) # Update optimizee parameters by meta-learner model_params = self.model_params for i, elm in enumerate(model_params.items()): name, w = elm meta_learner = self.meta_learners[i] ml_optimizer = self.ml_optimizers[i] shape = w.shape with cuda.get_device_from_id(self.device): xp = cuda.get_array_module(w.data) g_old = w.grad # no nedd to deep copy grad_data = xp.reshape(g_old, (np.prod(shape), 1)) # refine grad, update w, and replace grad = Variable(grad_data) g = meta_learner(grad) #TODO: use either h or c w -= F.reshape(g, shape) model_params[name] = w # Forward primary taks for training meta-leaners #TODO: use the same labeled data? y_pred = self.model(x_l0, self.model_params) self.loss_ml += F.softmax_cross_entropy(y_pred, y_l)
def accuracy_gpu(self, device=None): model = self.model optimizer = self.optimizer model.to_gpu(device=device) optimizer.setup(model) with cuda.get_device_from_id(device): return self._train_linear_classifier(model, optimizer, True)
def update_parameter_by_meta_learner( self, model_params, loss, x_l0, x_l1, y_l): # Forward meta-learner namedparams = model_params for i, elm in enumerate(namedparams.items()): # parameter-loop k, p = elm with cuda.get_device_from_id(self.device): shape = p.shape xp = cuda.get_array_module(p.data) x = p.grad grad = xp.reshape(x, (np.prod(shape), )) meta_learner = self.meta_learners[i] g = meta_learner(Variable(grad)) # forward w = p - F.reshape(g, shape) self.model_params[k] = w # Train meta-learner with main objective y_pred = self.model(x_l0, self.model_params) loss_ce = F.softmax_cross_entropy(y_pred, y_l) self.cleargrads() # need to clear W'grad due to loss_rec.backward for meta_learner in self.meta_learners: meta_learner.cleargrads() loss_ce.backward(retain_grad=True) for opt in self.opt_meta_learners: opt.update() loss_ce.unchain_backward() #TODO: here is a proper place to unchain?
def update_parameter_by_meta_learner( self, model_params, loss, x_l0, x_l1, y_l): # Forward meta-learner namedparams = model_params for i, elm in enumerate(namedparams.items()): # parameter-loop k, p = elm with cuda.get_device_from_id(self.device): shape = p.shape xp = cuda.get_array_module(p.data) # normalize grad x = p.grad p_val = 10 grad0 = xp.where(xp.absolute(x) > xp.exp(-p_val), xp.log(xp.absolute(x))/p_val, -1) grad1 = xp.where(xp.absolute(x) > xp.exp(-p_val), xp.sign(x), xp.exp(p_val)*x) grad0 = xp.reshape(grad0, (np.prod(shape), )) grad1 = xp.reshape(grad1, (np.prod(shape), )) grad0 = xp.expand_dims(grad0, axis=1) grad1 = xp.expand_dims(grad1, axis=1) input_grad = xp.concatenate((grad0, grad1), axis=1) # normalize loss x = loss.data loss0 = xp.where(xp.absolute(x) > xp.exp(-p_val), xp.log(xp.absolute(x))/p_val, -1) loss1 = xp.where(xp.absolute(x) > xp.exp(-p_val), xp.sign(x), xp.exp(p_val)*x) loss0 = xp.expand_dims(loss0, axis=0) loss1 = xp.expand_dims(loss1, axis=0) input_loss = xp.concatenate((loss0, loss1)) input_loss = xp.broadcast_to(input_loss, (input_grad.shape[0], 2)) # input input_ = xp.concatenate((input_grad, input_loss), axis=1) meta_learner = self.meta_learners[i] g = meta_learner(Variable(input_.astype(xp.float32))) # forward w = p - F.reshape(g, shape) * 1e-3 namedparams[k] = w # Train meta-learner with main objective y_pred = self.model(x_l0, self.model_params) loss_ce = F.softmax_cross_entropy(y_pred, y_l) self.cleargrads() # need to clear W'grad due to loss_rec.backward for meta_learner in self.meta_learners: meta_learner.cleargrads() loss_ce.backward(retain_grad=True) for opt in self.opt_meta_learners: opt.update() loss_ce.unchain_backward()
def __call__(self, x): """Updates the internal state and returns the LSTM outputs. Args: x (~chainer.Variable): A new batch from the input sequence. Returns: ~chainer.Variable: Outputs of updated LSTM units. """ lstm_in = self.upward(x) if self.h is not None: lstm_in += self.lateral(self.h) else: xp = self.xp with cuda.get_device_from_id(self._device_id): self.h = variable.Variable( xp.zeros((len(x.data), self.state_size), dtype=x.data.dtype), volatile='auto') if self.c is None: xp = self.xp with cuda.get_device_from_id(self._device_id): self.c = variable.Variable( xp.zeros((len(x.data), self.state_size), dtype=x.data.dtype), volatile='auto') lstm_in = reshape.reshape(lstm_in, (len(lstm_in.data), lstm_in.data.shape[1] // 4, 4)) a, i, f, o = split_axis.split_axis(lstm_in, 4, 2) a = reshape.reshape(a, (len(a.data), self.state_size)) i = reshape.reshape(i, (len(i.data), self.state_size)) f = reshape.reshape(f, (len(f.data), self.state_size)) o = reshape.reshape(o, (len(o.data), self.state_size)) c_tmp = tanh.tanh(a) * sigmoid.sigmoid(i) + sigmoid.sigmoid(f) * self.c self.c = zoneout.zoneout(self.c, c_tmp, self.c_ratio, self.train) self.h = zoneout.zoneout(self.h, sigmoid.sigmoid(o) * tanh.tanh(c_tmp), self.h_ratio, self.train) return self.h
def __init__(self, arch=None, weights_file=None, model=None, device=-1, precise=False): self.arch = arch self.precise = precise if model is not None: self.model = model else: print('Loading the model...') self.model = params['archs'][arch]() if weights_file: serializers.load_npz(weights_file, self.model) self.device = device if self.device >= 0: cuda.get_device_from_id(device).use() self.model.to_gpu() # create gaussian filter self.gaussian_kernel = self.create_gaussian_kernel(params['gaussian_sigma'], params['ksize'])[None, None] self.gaussian_kernel = cuda.to_gpu(self.gaussian_kernel)
def load_model(self): n_fg_class = len(self.train_dataset.fg_class_names) pooling_func = cmr.functions.roi_align_2d anchor_scales = (4, 8, 16, 32) roi_size = 14 min_size = 600 max_size = 1000 mask_initialW = chainer.initializers.Normal(0.01) if self.model_name == 'vgg16': self.mask_rcnn = cmr.models.MaskRCNNVGG16( n_fg_class=n_fg_class, pretrained_model='imagenet', pooling_func=pooling_func, anchor_scales=anchor_scales, roi_size=roi_size, min_size=min_size, max_size=max_size, mask_initialW=mask_initialW, ) elif self.model_name in ['resnet50', 'resnet101']: n_layers = int(self.model_name.lstrip('resnet')) self.mask_rcnn = cmr.models.MaskRCNNResNet( n_layers=n_layers, n_fg_class=n_fg_class, pooling_func=pooling_func, anchor_scales=anchor_scales, roi_size=roi_size, min_size=min_size, max_size=max_size, mask_initialW=mask_initialW, ) else: raise ValueError( 'Unsupported model_name: {}'.format(self.model_name)) self.model = cmr.models.MaskRCNNTrainChain(self.mask_rcnn) if self.gpu >= 0: cuda.get_device_from_id(self.gpu).use() self.model.to_gpu()
def __call__(self, x): """Applies the linear layer. Args: x (~chainer.Variable): Batch of input vectors. Returns: ~chainer.Variable: Output of the linear layer. """ if self.has_uninitialized_params: with cuda.get_device_from_id(self._device_id): self._initialize_params(x.size // x.shape[0]) return linear.linear(x, self.W, self.b)
def forward_meta_learners(self, ): # Forward of meta-learner, i.e., parameter update for i, name_param in enumerate(self.model_params.items()): k, p = name_param with cuda.get_device_from_id(self.device): shape = p.shape xp = cuda.get_array_module(p.data) w_data = p.data # meta learner is gated-reccurent unit for W not for G w_data = xp.reshape(w_data, (1, 1, np.prod(shape))) meta_learner = self.meta_learners[i] w_accum = meta_learner(Variable(w_data)) # forward w_accum = F.reshape(w_accum, shape) self.model_params[k] = w_accum
def __call__(self, x, W=None, b=None): if self.has_uninitialized_params: with cuda.get_device_from_id(self._device_id): self._initialize_params(x.shape[1]) if W is not None: return deconvolution_2d.deconvolution_2d( x, W, b, self.stride, self.pad, self.outsize, self.use_cudnn, deterministic=self.deterministic) return deconvolution_2d.deconvolution_2d( x, self.W, self.b, self.stride, self.pad, self.outsize, self.use_cudnn, deterministic=self.deterministic)
def forward_meta_learners(self, ): # Forward of meta-learner, i.e., parameter update for i, name_param in enumerate(self.model_params.items()): k, p = name_param with cuda.get_device_from_id(self.device): shape = p.shape xp = cuda.get_array_module(p.data) x = p.grad #grad = xp.reshape(x, (np.prod(shape), )) grad = xp.reshape(x, (np.prod(shape), 1)) meta_learner = self.meta_learners[i] g = meta_learner(Variable(grad)) # forward w = p - F.reshape(g, shape) self.model_params[k] = w # parameter update
def __call__(self, x): """Applies the convolution layer. Args: x (~chainer.Variable): Input image. Returns: ~chainer.Variable: Output of the convolution. """ if self.has_uninitialized_params: with cuda.get_device_from_id(self._device_id): self._initialize_params(x.shape[1]) return dilated_convolution_2d.dilated_convolution_2d( x, self.W, self.b, self.stride, self.pad, self.dilate, self.use_cudnn)