def __call__(self, x):
        h = cf.relu(self.linear1_bn(self.linear1(x)))
        h = cf.relu(self.linear2_bn(self.linear2(h)))
        bias = cf.reshape(self.linear_bias(h), (-1, self.num_vertices, 3))
        bias *= self.scaling
        base = self.vertices_base
        base = cf.broadcast_to(base[None, :, :], bias.shape)
        vertices = base + bias
        if self.symmetric:
            xy = vertices[:, :, :2]  # [bs, nv, 2]
            z = cf.absolute(vertices[:, :, 2:3])  # [bs, nv, 1]
            vertices = cf.concat((xy, z), axis=2)

            vertices = cf.transpose(
                cf.tensordot(vertices, self.symmetric_matrix, axes=(1, 0)),
                (0, 2, 1))

            xy = vertices[:, :, :2]  # [bs, nv, 2]
            z = vertices[:, :, 2:3]  # [bs, nv, 1]
            z = z * self.z_sign[None, :, None]
            vertices = cf.concat((xy, z), axis=2)

        vertices = cf.tanh(vertices) * self.tanh_scale

        return vertices, self.faces
Exemple #2
0
def create_2d_window(window_size, channel, xp):
    _1D_window = F.reshape(gaussian(window_size, 1.5, xp), (-1, 1))

    _2D_window = F.reshape(
        F.tensordot(_1D_window, _1D_window.transpose(), axes=1),
        (1, 1, -1, window_size))
    window = F.repeat(_2D_window, channel, axis=0)

    return window
    def setUp(self):
        self.a = self._setup_tensor(.5, 1, self.a_shape, self.a_dtype)
        self.b = self._setup_tensor(.5, 1, self.b_shape, self.b_dtype)
        ret_dtype = numpy.result_type(self.a_dtype, self.b_dtype)
        self.gc = self._setup_tensor(-1, 1, self.gc_shape, ret_dtype)
        self.gga = self._setup_tensor(.5, 1, self.a_shape, self.a_dtype)
        self.ggb = self._setup_tensor(.5, 1, self.b_shape, self.b_dtype)

        self.op = lambda a, b: F.tensordot(a, b, axes=self.axes)
        self.forward_answer = numpy.tensordot(self.a, self.b, self.axes)
Exemple #4
0
 def __call__(self, x, is_prob=False):
     if is_prob:
         x_emb = F.tensordot(x, self.embedding.embed.W, [[2], [0]])
     else:
         x_emb = self.embedding(x)
     x_emb = F.expand_dims(x_emb, 1)
     x_emb = normalizing(x_emb, 1)
     H = self.encoder(x_emb)
     logits = self.disc(H)
     return logits, H
 def test_invalid_shape(self):
     a_data = numpy.zeros((4, 3, 2), dtype=numpy.float32)
     b_data = numpy.zeros((2, 3, 5), dtype=numpy.float32)
     a = chainer.Variable(a_data)
     b = chainer.Variable(b_data)
     with self.assertRaises(ValueError):
         F.tensordot(a, b)
     with self.assertRaises(ValueError):
         F.tensordot(a, b, axes=((1, 2), (0, 1)))
     with self.assertRaises(ValueError):
         F.tensordot(a, b, axes=((0), (0)))
     with self.assertRaises(ValueError):
         F.tensordot(a, b, axes=((2), (2)))
    def __call__(self, x):
        batch_size = x.shape[0]
        hs = []
        for i in range(6):
            linear1 = getattr(self, 'linear_p%d_1' % i)
            conv1 = getattr(self, 'conv_p%d_1' % i)
            conv2 = getattr(self, 'conv_p%d_2' % i)
            conv3 = getattr(self, 'conv_p%d_3' % i)
            conv4 = getattr(self, 'conv_p%d_4' % i)
            linear1_bn = getattr(self, 'linear_p%d_1_bn' % i)
            conv1_bn = getattr(self, 'conv_p%d_1_bn' % i)
            conv2_bn = getattr(self, 'conv_p%d_2_bn' % i)
            conv3_bn = getattr(self, 'conv_p%d_3_bn' % i)

            h = linear1(x)
            h = h.reshape((h.shape[0], -1, 2, 2))
            h = cf.relu(linear1_bn(h))
            if not self.use_up_sampling:
                h = cf.relu(conv1_bn(conv1(h)))
                h = cf.relu(conv2_bn(conv2(h)))
                h = cf.relu(conv3_bn(conv3(h)))
            else:
                h = cf.relu(conv1_bn(conv1(up_sample(h))))
                h = cf.relu(conv2_bn(conv2(up_sample(h))))
                h = cf.relu(conv3_bn(conv3(up_sample(h))))
            h = conv4(h)  # [bs, 3, 16, 16]
            h = cf.transpose(h, (0, 2, 3, 1))  # [bs, 16, 16, 3]
            h = cf.reshape(h, (batch_size, -1, 3))  # [bs, 16 ** 2, 3]
            hs.append(h)

        h = cf.concat(hs, axis=1)  # [bs, 6 * 16 ** 2, 3]
        vm = self.xp.tile(self.vertices_matrix[None, :, :], (batch_size, 1, 1))
        bias = cf.matmul(vm, h, transa=True)
        bias *= self.scaling
        base = self.vertices_base
        base = cf.broadcast_to(base[None, :, :], bias.shape)
        vertices = base + bias
        if self.symmetric:
            xy = vertices[:, :, :2]  # [bs, nv, 2]
            z = cf.absolute(vertices[:, :, 2:3])  # [bs, nv, 1]
            vertices = cf.concat((xy, z), axis=2)

            vertices = cf.transpose(
                cf.tensordot(vertices, self.symmetric_matrix, axes=(1, 0)),
                (0, 2, 1))

            xy = vertices[:, :, :2]  # [bs, nv, 2]
            z = vertices[:, :, 2:3]  # [bs, nv, 1]
            z = z * self.z_sign[None, :, None]
            vertices = cf.concat((xy, z), axis=2)

        vertices = cf.tanh(vertices) * self.tanh_scale

        return vertices, self.faces
Exemple #7
0
    def __call__(self, x_data, u_h):
        """
        Perform one forward step computation given the input x_data,
        and the current states of the input neurons (u_io) and the
        hidden context layer neurons (u_h).
        If u_h is None, the initial states are used instead.
        """

        from chainer.backends import cuda
        xp = cuda.get_array_module(self.initial_states.W)

        x = chainer.Variable(x_data)  #.reshape((1,-1)))

        if not self.current_y.array is None:

            # get mean and variance for prior distribution

            pred_mean = self.current_y
            # prediction variance is taken from current variance estimation which expresses ability to predict the variance in the training data
            # hyp_prior multiplication of factor H
            pred_var = self.current_v * (self.hyp_prior)

            if not xp.any(pred_var.array):
                # It should not happen, but just in case check for zero prediction variance
                print("Predicted variance is zero!!!!")
                pred_var.array = xp.tile(np.float32(0.00001),
                                         pred_var.array.shape)

            # get mean and variance for input distribution

            input_mean = x
            # if external_signal_variance is not available, set equal to pred_var
            if self.external_signal_variance is None:
                input_var = pred_var
            else:
                input_var = chainer.Variable(
                    xp.tile(
                        xp.asarray(xp.float32([self.external_signal_variance
                                               ])), (x.shape[0], x.shape[1])))

            ### Bayesian inference ###
            if xp.any(xp.isinf(input_var.array)):
                sigma_BI = xp.sqrt(pred_var.array)
                mu_BI = pred_mean.array
            else:
                # standard deviation of BI signal
                sigma_BI = xp.sqrt(
                    xp.divide(xp.multiply(input_var.array, pred_var.array),
                              (input_var.array + pred_var.array)))
                # mean of BI signal
                mu_BI = xp.power(sigma_BI, 2) * (
                    xp.divide(pred_mean.array, pred_var.array) +
                    xp.divide(input_mean.array, input_var.array))

            # sample from posterior distribution to get new input for the network
            if self.add_BI_variance:
                if cuda.get_array_module(self.initial_states.W) == np:
                    x.array = mu_BI + sigma_BI * xp.float32(
                        xp.random.randn(sigma_BI.shape[0], sigma_BI.shape[1]))
                else:
                    x.array = mu_BI + sigma_BI * (xp.random.randn(
                        sigma_BI.shape[0], sigma_BI.shape[1],
                        dtype=xp.float32))
            else:
                x.array = mu_BI

        self.current_x = x

        # in the first time step no u_h is given => set initial states
        if u_h is None:
            u_h = self.initial_states()[self.classes]

        # forward context mapping

        # update recurrent connections
        h = F.tanh(u_h)
        if self.bias_learning:
            recurrent_connections = F.transpose(
                F.tensordot(self.h_to_h.W, F.transpose(h), axes=1)) + F.tile(
                    self.h_to_h.b, (h.shape[0], 1))
            u_h = chainer.functions.scale(
                self.x_to_h(x) + recurrent_connections,
                1 / self.tau_c()) + chainer.functions.scale(
                    u_h, (1 - 1 / self.tau_c()))
        else:
            u_h = chainer.functions.scale(
                self.x_to_h_bias(self.x_to_h(x)) +
                self.h_to_h_bias(self.h_to_h(h)),
                1 / self.tau_c()) + chainer.functions.scale(
                    u_h, (1 - 1 / self.tau_c()))

        # forward output mapping
        u_out = self.h_to_y(h)
        y = F.tanh(u_out)

        # forward variance mapping
        u_v = self.h_to_v(h)
        v = F.exp(u_v + self.aberrant_sensory_precision
                  ) + 0.00001  # [Idei et al. 2017]

        self.current_y = y
        self.current_v = v

        return u_h, y, v
                        '-m',
                        type=str,
                        default="model/ResNet-50-model.npz")
    parser.add_argument('--image', '-i', type=str, default="data/cat.jpeg")
    args = parser.parse_args()

    img = utils.read_image(args.image, color=True)
    img = F.expand_dims(img, 0)
    img = F.resize_images(img, (224, 224))
    ax = vis_image(F.squeeze(img, 0).data)

    model = ResNetCAM()
    chainer.serializers.load_npz(args.model, model)

    with chainer.using_config('train', False):
        conv_outputs, preds = model(img)
    resized_conv_outputs = F.resize_images(conv_outputs, (224, 224))
    to_multiply_tensor = model.fc6.W[2].reshape(1, 2048)

    heatmap = np.flip(
        F.tensordot(to_multiply_tensor, resized_conv_outputs).data, 1)

    ax.imshow(heatmap, cmap='jet', alpha=.4)
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)

    ax.get_xaxis().set_ticks([])
    ax.get_yaxis().set_ticks([])
    plt.title("Predicted: " + CLASS_ID[int(F.argmax(preds).data)])
    plt.savefig("predicted/result.png")
    plt.show()
Exemple #9
0
 def forward(self, inputs, device):
     a, b = inputs
     y = F.tensordot(a, b, axes=self.axes)
     return y,