Exemple #1
0
class TestLinear(TestCase):
    def setUp(self):
        self.func = Linear(3, 2)
        self.func.W = numpy.random.uniform(-1, 1, self.func.W.shape).astype(
            numpy.float32)
        self.func.b = numpy.random.uniform(-1, 1, self.func.b.shape).astype(
            numpy.float32)
        self.func.gW.fill(0)
        self.func.gb.fill(0)

        self.W = self.func.W.copy()  # fixed on CPU
        self.b = self.func.b.copy()  # fixed on CPU

        self.x = numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.float32)
        self.gy = numpy.random.uniform(-1, 1, (4, 2)).astype(numpy.float32)
        self.y = self.x.dot(self.func.W.T) + self.func.b

    def check_forward(self, x_data):
        x = Variable(x_data)
        y = self.func(x)
        y_expect = self.x.dot(self.W.T) + self.b
        assert_allclose(y_expect, y.data)

    def test_forward_cpu(self):
        self.check_forward(self.x)

    @attr.gpu
    def test_forward_gpu(self):
        self.func.to_gpu()
        self.check_forward(to_gpu(self.x))

    def check_backward(self, x_data, y_grad):
        x = Variable(x_data)
        y = self.func(x)
        y.grad = y_grad
        y.backward()

        func = y.creator
        f = lambda: func.forward((x.data, ))
        gx, gW, gb = numerical_grad(f, (x.data, func.W, func.b), (y.grad, ),
                                    eps=1e-2)

        assert_allclose(gx, x.grad)
        assert_allclose(gW, func.gW)
        assert_allclose(gb, func.gb)

    def test_backward_cpu(self):
        self.check_backward(self.x, self.gy)

    @attr.gpu
    def test_backward_gpu(self):
        self.func.to_gpu()
        self.check_backward(to_gpu(self.x), to_gpu(self.gy))
Exemple #2
0
class TestLinear(TestCase):
    def setUp(self):
        self.func = Linear(3, 2)
        self.func.W = numpy.random.uniform(-1, 1, self.func.W.shape).astype(numpy.float32)
        self.func.b = numpy.random.uniform(-1, 1, self.func.b.shape).astype(numpy.float32)
        self.func.gW.fill(0)
        self.func.gb.fill(0)

        self.W = self.func.W.copy()  # fixed on CPU
        self.b = self.func.b.copy()  # fixed on CPU

        self.x = numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.float32)
        self.gy = numpy.random.uniform(-1, 1, (4, 2)).astype(numpy.float32)
        self.y = self.x.dot(self.func.W.T) + self.func.b

    def check_forward(self, x_data):
        x = Variable(x_data)
        y = self.func(x)
        y_expect = self.x.dot(self.W.T) + self.b
        assert_allclose(y_expect, y.data)

    def test_forward_cpu(self):
        self.check_forward(self.x)

    @attr.gpu
    def test_forward_gpu(self):
        self.func.to_gpu()
        self.check_forward(to_gpu(self.x))

    def check_backward(self, x_data, y_grad):
        x = Variable(x_data)
        y = self.func(x)
        y.grad = y_grad
        y.backward()

        func = y.creator
        f = lambda: func.forward((x.data,))
        gx, gW, gb = numerical_grad(f, (x.data, func.W, func.b), (y.grad,), eps=1e-2)

        assert_allclose(gx, x.grad)
        assert_allclose(gW, func.gW)
        assert_allclose(gb, func.gb)

    def test_backward_cpu(self):
        self.check_backward(self.x, self.gy)

    @attr.gpu
    def test_backward_gpu(self):
        self.func.to_gpu()
        self.check_backward(to_gpu(self.x), to_gpu(self.gy))
Exemple #3
0
    def setUp(self):
        self.func = Linear(3, 2)
        self.func.W = numpy.random.uniform(-1, 1, self.func.W.shape).astype(
            numpy.float32)
        self.func.b = numpy.random.uniform(-1, 1, self.func.b.shape).astype(
            numpy.float32)
        self.func.gW.fill(0)
        self.func.gb.fill(0)

        self.W = self.func.W.copy()  # fixed on CPU
        self.b = self.func.b.copy()  # fixed on CPU

        self.x = numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.float32)
        self.gy = numpy.random.uniform(-1, 1, (4, 2)).astype(numpy.float32)
        self.y = self.x.dot(self.func.W.T) + self.func.b
Exemple #4
0
 def __init__(self, optimizer):
     self.model = FunctionSet(l=Linear(self.UNIT_NUM, 2))
     self.optimizer = optimizer
     # true parameters
     self.w = np.random.uniform(-1, 1,
                                (self.UNIT_NUM, 1)).astype(np.float32)
     self.b = np.random.uniform(-1, 1, (1, )).astype(np.float32)
Exemple #5
0
    def setUp(self):
        self.func = Linear(3, 2)
        self.func.W = numpy.random.uniform(-1, 1, self.func.W.shape).astype(numpy.float32)
        self.func.b = numpy.random.uniform(-1, 1, self.func.b.shape).astype(numpy.float32)
        self.func.gW.fill(0)
        self.func.gb.fill(0)

        self.W = self.func.W.copy()  # fixed on CPU
        self.b = self.func.b.copy()  # fixed on CPU

        self.x = numpy.random.uniform(-1, 1, (4, 3)).astype(numpy.float32)
        self.gy = numpy.random.uniform(-1, 1, (4, 2)).astype(numpy.float32)
        self.y = self.x.dot(self.func.W.T) + self.func.b
 def setUp(self):
     self.fs = FunctionSet(a=Linear(3, 2), b=Linear(3, 2))