def __init__(self, opt): super().__init__() with self.init_scope(): self.detecter = L.VGG16Layers().to_gpu(0) self.layer_names = ['conv1_2', 'conv2_2', 'conv3_3', 'conv4_3', 'conv5_3'] if opt.perceptual_model == 'VGG19': self.detecter = L.VGG19Layers().to_gpu(0) self.layer_name = ['conv1_2', 'conv2_2', 'conv3_4', 'conv4_4', 'conv5_4'] self.weight = [32 ** -1, 16 ** -1, 8 ** -1, 4 ** -1, 1] self.coef = opt.perceptual_coef self.criterion = F.mean_absolute_error if opt.perceptual_mode == 'MAE': self.criterion = F.mean_absolute_error if opt.perceptual_mode == 'MSE': self.criterion = F.mean_squared_error self.coef *= 0.5
def get_vgg19(batchsize): model = L.VGG19Layers(pretrained_model=None) model = Wrapper(model, 'fc8') x = np.random.uniform(size=(batchsize, 3, 224, 224)).astype('f') x = chainer.as_variable(x) t = np.random.randint(size=(batchsize, ), low=0, high=1000).astype(np.int32) t = chainer.as_variable(t) return [x, t], model
def __init__(self, last_only=False): super(VGG, self).__init__() self.last_only = last_only with self.init_scope(): self.base = L.VGG19Layers()
def __init__(self): super(VGG, self).__init__() with self.init_scope(): self.base = L.VGG19Layers()