def make_dqn_agent(self, env, q_func, opt, explorer, rbuf, gpu): return DoubleDQN(q_func, opt, rbuf, gpu=gpu, gamma=0.9, explorer=explorer, replay_start_size=100, target_update_interval=100)
def main(): parser = argparse.ArgumentParser() parser.add_argument('--outdir', type=str, default='/tmp/chainerRL_results', help='Directory path to save output files.' ' If it does not exist, it will be created.') parser.add_argument('--seed', type=int, default=0, help='Random seed [0, 2 ** 32)') parser.add_argument('--final-exploration-steps', type=int, default=10**4) parser.add_argument('--start-epsilon', type=float, default=1.0) parser.add_argument('--end-epsilon', type=float, default=0.1) parser.add_argument('--noisy-net-sigma', type=float, default=None) parser.add_argument('--evaluate', action='store_true', default=False, help="Run evaluation mode") parser.add_argument('--load', type=str, default=None, help="Load saved_model") parser.add_argument('--steps', type=int, default=4 * 10**6) parser.add_argument('--prioritized-replay', action='store_true') parser.add_argument('--replay-start-size', type=int, default=1000) parser.add_argument('--target-update-interval', type=int, default=5 * 10**2) parser.add_argument('--target-update-method', type=str, default='hard') parser.add_argument('--soft-update-tau', type=float, default=1e-2) parser.add_argument('--update-interval', type=int, default=1) parser.add_argument('--eval-n-runs', type=int, default=1) parser.add_argument('--eval-interval', type=int, default=1e4, help="After how many steps to evaluate the agent." "(-1 -> always)") parser.add_argument('--n-hidden-channels', type=int, default=20) parser.add_argument('--n-hidden-layers', type=int, default=20) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--minibatch-size', type=int, default=None) parser.add_argument('--render-train', action='store_true') parser.add_argument('--render-eval', action='store_true') parser.add_argument('--reward-scale-factor', type=float, default=1) parser.add_argument('--time-step-limit', type=int, default=1e5) parser.add_argument('--outdir-time-suffix', choices=['empty', 'none', 'time'], default='empty', type=str.lower) parser.add_argument('--checkpoint_frequency', type=int, default=1e3, help="Nuber of steps to checkpoint after") parser.add_argument('--verbose', '-v', action='store_true', help='Use debug log-level') args = parser.parse_args() import logging logging.basicConfig( level=logging.INFO if not args.verbose else logging.DEBUG) # Set a random seed used in ChainerRL ALSO SETS NUMPY SEED! misc.set_random_seed(args.seed) if args.outdir and not args.load: outdir_suffix_dict = { 'none': '', 'empty': '', 'time': '%Y%m%dT%H%M%S.%f' } args.outdir = experiments.prepare_output_dir( args, args.outdir, argv=sys.argv, time_format=outdir_suffix_dict[args.outdir_time_suffix]) elif args.load: if args.load.endswith(os.path.sep): args.load = args.load[:-1] args.outdir = os.path.dirname(args.load) count = 0 fn = os.path.join(args.outdir.format(count), 'scores_{:>03d}') while os.path.exists(fn.format(count)): count += 1 os.rename(os.path.join(args.outdir, 'scores.txt'), fn.format(count)) if os.path.exists(os.path.join(args.outdir, 'best')): os.rename(os.path.join(args.outdir, 'best'), os.path.join(args.outdir, 'best_{:>03d}'.format(count))) logging.info('Output files are saved in {}'.format(args.outdir)) def clip_action_filter(a): return np.clip(a, action_space.low, action_space.high) def make_env(test): HOST = '' # The server's hostname or IP address PORT = 54321 # The port used by the server if test: # Just such that eval and train env don't have the same port PORT += 1 # TODO don't hardcode env params # TODO if we use this solution (i.e. write port to file and read it with FD) we would have to make sure that # outdir doesn't append time strings. Otherwise it will get hard to use on the cluster env = FDEnvSelHeur(host=HOST, port=PORT, num_heuristics=2, config_dir=args.outdir) # Use different random seeds for train and test envs env_seed = 2**32 - 1 - args.seed if test else args.seed env.seed(env_seed) # Cast observations to float32 because our model uses float32 env = chainerrl.wrappers.CastObservationToFloat32(env) if isinstance(env.action_space, spaces.Box): misc.env_modifiers.make_action_filtered(env, clip_action_filter) if not test: # Scale rewards (and thus returns) to a reasonable range so that # training is easier env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor) if ((args.render_eval and test) or (args.render_train and not test)): env = chainerrl.wrappers.Render(env) return env env = make_env(test=False) # state = env.reset() # while True: # for x in [1,1,1,1,0,0,0,0]: # state, reward, done, _ = env.step(x) # print(x) # if done: # break timestep_limit = args.time_step_limit obs_space = env.observation_space obs_size = obs_space.low.size action_space = env.action_space if isinstance(action_space, spaces.Box): # Usefull if we want to control action_size = action_space.low.size # other continous parameters # Use NAF to apply DQN to continuous action spaces q_func = q_functions.FCQuadraticStateQFunction( obs_size, action_size, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers, action_space=action_space) # Use the Ornstein-Uhlenbeck process for exploration ou_sigma = (action_space.high - action_space.low) * 0.2 explorer = explorers.AdditiveOU(sigma=ou_sigma) else: n_actions = action_space.n q_func = q_functions.FCStateQFunctionWithDiscreteAction( obs_size, n_actions, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers) # q_func = FCDuelingDQN( # obs_size, n_actions) # Use epsilon-greedy for exploration explorer = explorers.LinearDecayEpsilonGreedy( args.start_epsilon, args.end_epsilon, args.final_exploration_steps, action_space.sample) if args.noisy_net_sigma is not None: links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma) # Turn off explorer explorer = explorers.Greedy() # Draw the computational graph and save it in the output directory. if not args.load: chainerrl.misc.draw_computational_graph( [q_func(np.zeros_like(obs_space.low, dtype=np.float32)[None])], os.path.join(args.outdir, 'model')) opt = optimizers.Adam(eps=1e-2) logging.info('Optimizer: %s', str(opt)) opt.setup(q_func) opt.add_hook(GradientClipping(5)) rbuf_capacity = 5 * 10**5 if args.minibatch_size is None: args.minibatch_size = 32 # args.minibatch_size = 16 if args.prioritized_replay: betasteps = (args.steps - args.replay_start_size) \ // args.update_interval rbuf = replay_buffer.PrioritizedReplayBuffer(rbuf_capacity, betasteps=betasteps) else: rbuf = replay_buffer.ReplayBuffer(rbuf_capacity) agent = DDQN( q_func, opt, rbuf, gamma=args.gamma, explorer=explorer, replay_start_size=args.replay_start_size, target_update_interval=args.target_update_interval, update_interval=args.update_interval, minibatch_size=args.minibatch_size, target_update_method=args.target_update_method, soft_update_tau=args.soft_update_tau, ) t_offset = 0 if args.load: # Continue training model or load for evaluation agent.load(args.load) rbuf.load(os.path.join(args.load, 'replay_buffer.pkl')) try: t_offset = int(os.path.basename(args.load).split('_')[0]) except TypeError: with open(os.path.join(args.load, 't.txt'), 'r') as fh: data = fh.readlines() t_offset = int(data[0]) except ValueError: t_offset = 0 eval_env = make_env(test=False) if args.evaluate: eval_stats = experiments.eval_performance( env=eval_env, agent=agent, n_steps=None, n_episodes=args.eval_n_runs, max_episode_len=timestep_limit) print('n_runs: {} mean: {} median: {} stdev {}'.format( args.eval_n_runs, eval_stats['mean'], eval_stats['median'], eval_stats['stdev'])) else: criterion = 'steps' # can be made an argument if we support any other form of checkpointing l = logging.getLogger('Checkpoint_Hook') def checkpoint(env, agent, step): if criterion == 'steps': if step % args.checkpoint_frequency == 0: save_agent_and_replay_buffer( agent, step, args.outdir, suffix='_chkpt', logger=l, chckptfrq=args.checkpoint_frequency) else: # TODO seems to checkpoint given wall_time we would have to modify the environment such that it tracks # time or number of episodes raise NotImplementedError hooks = [checkpoint] experiments.train_agent(agent=agent, env=env, steps=args.steps, outdir=args.outdir, step_hooks=hooks, step_offset=t_offset)
def dqn_main(): import logging logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser() parser.add_argument('--outdir', type=str, default='results', help='Directory path to save output files.' ' If it does not exist, it will be created.') parser.add_argument('--env', type=str, default='Pendulum-v0') parser.add_argument('--seed', type=int, default=0, help='Random seed [0, 2 ** 32)') parser.add_argument('--gpu', type=int, default=0) parser.add_argument('--final-exploration-steps', type=int, default=10**4) parser.add_argument('--start-epsilon', type=float, default=1.0) parser.add_argument('--end-epsilon', type=float, default=0.1) parser.add_argument('--noisy-net-sigma', type=float, default=None) parser.add_argument('--demo', action='store_true', default=False) parser.add_argument('--load', type=str, default=None) parser.add_argument('--steps', type=int, default=10**5) parser.add_argument('--prioritized-replay', action='store_true') parser.add_argument('--replay-start-size', type=int, default=1000) parser.add_argument('--target-update-interval', type=int, default=10**2) parser.add_argument('--target-update-method', type=str, default='hard') parser.add_argument('--soft-update-tau', type=float, default=1e-2) parser.add_argument('--update-interval', type=int, default=1) parser.add_argument('--eval-n-runs', type=int, default=100) parser.add_argument('--eval-interval', type=int, default=10**4) parser.add_argument('--n-hidden-channels', type=int, default=100) parser.add_argument('--n-hidden-layers', type=int, default=2) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--minibatch-size', type=int, default=None) parser.add_argument('--render-train', action='store_true') parser.add_argument('--render-eval', action='store_true') parser.add_argument('--monitor', action='store_true') parser.add_argument('--reward-scale-factor', type=float, default=1e-3) parser.add_argument('--DD', action='store_true', default=False) args = parser.parse_args() # Set a random seed used in ChainerRL misc.set_random_seed(args.seed, gpus=(args.gpu, )) args.outdir = experiments.prepare_output_dir(args, args.outdir, argv=sys.argv) print('Output files are saved in {}'.format(args.outdir)) def clip_action_filter(a): return np.clip(a, action_space.low, action_space.high) def make_env(test): env = gym.make(args.env) # Use different random seeds for train and test envs env_seed = 2**32 - 1 - args.seed if test else args.seed env.seed(env_seed) # Cast observations to float32 because our model uses float32 env = chainerrl.wrappers.CastObservationToFloat32(env) if args.monitor: env = chainerrl.wrappers.Monitor(env, args.outdir) if isinstance(env.action_space, spaces.Box): misc.env_modifiers.make_action_filtered(env, clip_action_filter) if not test: # Scale rewards (and thus returns) to a reasonable range so that # training is easier env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor) if ((args.render_eval and test) or (args.render_train and not test)): env = SnakeRender(env) return env env = make_env(test=False) timestep_limit = env.spec.max_episode_steps obs_space = env.observation_space obs_size = obs_space.low.size action_space = env.action_space if isinstance(action_space, spaces.Box): action_size = action_space.low.size # Use NAF to apply DQN to continuous action spaces q_func = q_functions.FCQuadraticStateQFunction( obs_size, action_size, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers, action_space=action_space) # Use the Ornstein-Uhlenbeck process for exploration ou_sigma = (action_space.high - action_space.low) * 0.2 explorer = explorers.AdditiveOU(sigma=ou_sigma) else: n_actions = action_space.n q_func = q_functions.FCStateQFunctionWithDiscreteAction( obs_size, n_actions, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers) # Use epsilon-greedy for exploration explorer = explorers.LinearDecayEpsilonGreedy( args.start_epsilon, args.end_epsilon, args.final_exploration_steps, action_space.sample) if args.noisy_net_sigma is not None: links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma) # Turn off explorer explorer = explorers.Greedy() # Draw the computational graph and save it in the output directory. chainerrl.misc.draw_computational_graph( [q_func(np.zeros_like(obs_space.low, dtype=np.float32)[None])], os.path.join(args.outdir, 'model')) opt = optimizers.Adam() opt.setup(q_func) rbuf_capacity = 5 * 10**5 if args.minibatch_size is None: args.minibatch_size = 32 if args.prioritized_replay: betasteps = (args.steps - args.replay_start_size) \ // args.update_interval rbuf = replay_buffer.PrioritizedReplayBuffer(rbuf_capacity, betasteps=betasteps) else: rbuf = replay_buffer.ReplayBuffer(rbuf_capacity) agent = DQN( q_func, opt, rbuf, gpu=args.gpu, gamma=args.gamma, explorer=explorer, replay_start_size=args.replay_start_size, target_update_interval=args.target_update_interval, update_interval=args.update_interval, minibatch_size=args.minibatch_size, target_update_method=args.target_update_method, soft_update_tau=args.soft_update_tau, ) if args.DD: agent = DoubleDQN( q_func, opt, rbuf, gpu=args.gpu, gamma=args.gamma, explorer=explorer, replay_start_size=args.replay_start_size, target_update_interval=args.target_update_interval, update_interval=args.update_interval, minibatch_size=args.minibatch_size, target_update_method=args.target_update_method, soft_update_tau=args.soft_update_tau, ) if args.load: agent.load(args.load) eval_env = make_env(test=True) if args.demo: eval_stats = experiments.eval_performance( env=eval_env, agent=agent, n_steps=None, n_episodes=args.eval_n_runs, max_episode_len=timestep_limit) print('n_runs: {} mean: {} median: {} stdev {}'.format( args.eval_n_runs, eval_stats['mean'], eval_stats['median'], eval_stats['stdev'])) else: experiments.train_agent_with_evaluation( agent=agent, env=env, steps=args.steps, eval_n_steps=None, eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval, outdir=args.outdir, eval_env=eval_env, train_max_episode_len=timestep_limit)
def main(args): import logging logging.basicConfig(level=logging.INFO, filename='log') if(type(args) is list): args=make_args(args) # Set a random seed used in ChainerRL misc.set_random_seed(args.seed, gpus=(args.gpu,)) if not os.path.exists(args.outdir): os.makedirs(args.outdir) print('Output files are saved in {}'.format(args.outdir)) def clip_action_filter(a): return np.clip(a, action_space.low, action_space.high) def make_env(test): env = gym.make(args.env) # Use different random seeds for train and test envs env_seed = 2 ** 32 - 1 - args.seed if test else args.seed env.seed(env_seed) env = chainerrl.wrappers.CastObservationToFloat32(env) if isinstance(env.action_space, spaces.Box): misc.env_modifiers.make_action_filtered(env, clip_action_filter) if not test: # Scale rewards (and thus returns) to a reasonable range so that # training is easier env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor) if ((args.render_eval and test) or (args.render_train and not test)): env = chainerrl.wrappers.Render(env) return env env = make_env(test=False) timestep_limit = env.spec.tags.get( 'wrapper_config.TimeLimit.max_episode_steps') obs_space = env.observation_space obs_size = obs_space.low.size action_space = env.action_space if isinstance(action_space, spaces.Box): print("Use NAF to apply DQN to continuous action spaces") action_size = action_space.low.size # Use NAF to apply DQN to continuous action spaces q_func = q_functions.FCQuadraticStateQFunction( obs_size, action_size, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers, action_space=action_space) # Use the Ornstein-Uhlenbeck process for exploration ou_sigma = (action_space.high - action_space.low) * 0.2 explorer = explorers.AdditiveOU(sigma=ou_sigma) else: print("not continuous action spaces") n_actions = action_space.n q_func = q_functions.FCStateQFunctionWithDiscreteAction( obs_size, n_actions, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers) # Use epsilon-greedy for exploration explorer = explorers.LinearDecayEpsilonGreedy( args.start_epsilon, args.end_epsilon, args.final_exploration_steps, action_space.sample) if args.noisy_net_sigma is not None: links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma) # Turn off explorer explorer = explorers.Greedy() # Draw the computational graph and save it in the output directory. chainerrl.misc.draw_computational_graph( [q_func(np.zeros_like(obs_space.low, dtype=np.float32)[None])], os.path.join(args.outdir, 'model')) opt = optimizers.Adam() opt.setup(q_func) rbuf_capacity = 5 * 10 ** 5 if args.minibatch_size is None: args.minibatch_size = 32 if args.prioritized_replay: betasteps = (args.steps - args.replay_start_size) \ // args.update_interval rbuf = replay_buffer.PrioritizedReplayBuffer( rbuf_capacity, betasteps=betasteps) else: rbuf = replay_buffer.ReplayBuffer(rbuf_capacity) agent = DoubleDQN(q_func, opt, rbuf, gpu=args.gpu, gamma=args.gamma, explorer=explorer, replay_start_size=args.replay_start_size, target_update_interval=args.target_update_interval, update_interval=args.update_interval, minibatch_size=args.minibatch_size, target_update_method=args.target_update_method, soft_update_tau=args.soft_update_tau, ) if args.load_agent: agent.load(args.load_agent) eval_env = make_env(test=True) if (args.mode=='train'): experiments.train_agent_with_evaluation( agent=agent, env=env, steps=args.steps, eval_n_steps=None, eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval, outdir=args.outdir, eval_env=eval_env, step_offset=args.step_offset, checkpoint_freq=args.checkpoint_freq, train_max_episode_len=timestep_limit, log_type=args.log_type ) elif (args.mode=='check'): from matplotlib import animation import matplotlib.pyplot as plt frames = [] for i in range(3): obs = env.reset() done = False R = 0 t = 0 while not done and t < 200: frames.append(env.render(mode = 'rgb_array')) action = agent.act(obs) obs, r, done, _ = env.step(action) R += r t += 1 print('test episode:', i, 'R:', R) agent.stop_episode() env.close() from IPython.display import HTML plt.figure(figsize=(frames[0].shape[1]/72.0, frames[0].shape[0]/72.0),dpi=72) patch = plt.imshow(frames[0]) plt.axis('off') def animate(i): patch.set_data(frames[i]) anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames),interval=50) anim.save(args.save_mp4) return anim
def main(): parser = argparse.ArgumentParser() parser.add_argument('--outdir', type=str, default='/tmp/chainerRL_results', help='Directory path to save output files.' ' If it does not exist, it will be created.') parser.add_argument('--seed', type=int, default=0, help='Random seed [0, 2 ** 32)') parser.add_argument('--final-exploration-steps', type=int, default=10**4) parser.add_argument('--start-epsilon', type=float, default=1.0) parser.add_argument('--end-epsilon', type=float, default=0.1) parser.add_argument('--noisy-net-sigma', type=float, default=None) parser.add_argument('--evaluate', action='store_true', default=False, help="Run evaluation mode") parser.add_argument('--load', type=str, default=None, help="Load saved_model") parser.add_argument('--steps', type=int, default=10**6) parser.add_argument('--prioritized-replay', action='store_true') parser.add_argument('--replay-start-size', type=int, default=1000) parser.add_argument('--target-update-interval', type=int, default=10**2) parser.add_argument('--target-update-method', type=str, default='hard') parser.add_argument('--soft-update-tau', type=float, default=1e-2) parser.add_argument('--update-interval', type=int, default=1) parser.add_argument('--eval-n-runs', type=int, default=100) parser.add_argument('--eval-interval', type=int, default=11) parser.add_argument('--n-hidden-channels', type=int, default=50) parser.add_argument('--n-hidden-layers', type=int, default=1) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--minibatch-size', type=int, default=None) parser.add_argument('--reward-scale-factor', type=float, default=1) parser.add_argument('--outdir-time-suffix', choices=['empty', 'none', 'time'], default='empty', type=str.lower) parser.add_argument('--checkpoint_frequency', type=int, default=1e3, help="Nuber of steps to checkpoint after") parser.add_argument('--verbose', '-v', action='store_true', help='Use debug log-level') parser.add_argument('--scenario', choices=[ '1D-INST', '1D-DIST', '1DM', '2DM', '3DM', '5DM', '1D3M', '2D3M', '3D3M', '5D3M' ], default='1D-INST', type=str.upper, help='Which scenario to use.') if __name__ != '__main__': print(__name__) parser.add_argument( '--timeout', type=int, default=0, help='Wallclock timeout in sec') # Has no effect in this file! # can only be used in conjunction with "train_with_wallclock_limit.py"! args = parser.parse_args() import logging logging.basicConfig( level=logging.INFO if not args.verbose else logging.DEBUG) # Set a random seed used in ChainerRL ALSO SETS NUMPY SEED! misc.set_random_seed(args.seed) if args.outdir and not args.load: outdir_suffix_dict = { 'none': '', 'empty': '', 'time': '%Y%m%dT%H%M%S.%f' } args.outdir = experiments.prepare_output_dir( args, args.outdir, argv=sys.argv, time_format=outdir_suffix_dict[args.outdir_time_suffix]) elif args.load: if args.load.endswith(os.path.sep): args.load = args.load[:-1] args.outdir = os.path.dirname(args.load) count = 0 fn = os.path.join(args.outdir.format(count), 'scores_{:>03d}') while os.path.exists(fn.format(count)): count += 1 os.rename(os.path.join(args.outdir, 'scores.txt'), fn.format(count)) if os.path.exists(os.path.join(args.outdir, 'best')): os.rename(os.path.join(args.outdir, 'best'), os.path.join(args.outdir, 'best_{:>03d}'.format(count))) logging.info('Output files are saved in {}'.format(args.outdir)) def make_env(test): if args.scenario == '1D-INST': # Used to create Figures 2(b)&(c) env = SigMV(instance_feats=os.path.join( os.path.dirname(os.path.realpath(__file__)), '..', 'envs', 'feats.csv' if not test else 'test_feats.csv'), seed=args.seed, n_actions=1, action_vals=(2, )) elif args.scenario == '1D-DIST': # Used to create Figure 2(a) env_seed = 2**32 - 1 - args.seed if test else args.seed env = SigMV(seed=env_seed, n_actions=1, action_vals=(2, )) elif args.scenario == '1D3M': # Used to create Figure 3(a) env_seed = 2**32 - 1 - args.seed if test else args.seed env = SigMV(n_actions=1, action_vals=(3, ), seed=env_seed) elif args.scenario == '2D3M': # Used to create Figure 3(b) env_seed = 2**32 - 1 - args.seed if test else args.seed env = SigMV(n_actions=2, action_vals=(3, 3), seed=env_seed) elif args.scenario == '3D3M': # Used to create Figure 3(c) env_seed = 2**32 - 1 - args.seed if test else args.seed env = SigMV(n_actions=3, action_vals=(3, 3, 3), seed=env_seed) elif args.scenario == '5D3M': # Used to create Figure 3(d) env_seed = 2**32 - 1 - args.seed if test else args.seed env = SigMV(n_actions=5, action_vals=(3, 3, 3, 3, 3), seed=env_seed) # Cast observations to float32 because our model uses float32 env = chainerrl.wrappers.CastObservationToFloat32(env) return env env = make_env(test=False) timestep_limit = 10**3 # TODO don't hardcode env params obs_space = env.observation_space obs_size = obs_space.low.size action_space = env.action_space n_actions = action_space.n q_func = q_functions.FCStateQFunctionWithDiscreteAction( obs_size, n_actions, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers) explorer = explorers.LinearDecayEpsilonGreedy(args.start_epsilon, args.end_epsilon, args.final_exploration_steps, action_space.sample) if args.noisy_net_sigma is not None: links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma) # Turn off explorer explorer = explorers.Greedy() # Draw the computational graph and save it in the output directory. if not args.load: chainerrl.misc.draw_computational_graph( [q_func(np.zeros_like(obs_space.low, dtype=np.float32)[None])], os.path.join(args.outdir, 'model')) opt = optimizers.Adam(eps=1e-2) opt.setup(q_func) opt.add_hook(GradientClipping(5)) rbuf_capacity = 5 * 10**5 if args.minibatch_size is None: args.minibatch_size = 32 if args.prioritized_replay: betasteps = (args.steps - args.replay_start_size) \ // args.update_interval rbuf = replay_buffer.PrioritizedReplayBuffer(rbuf_capacity, betasteps=betasteps) else: rbuf = replay_buffer.ReplayBuffer(rbuf_capacity) agent = DDQN( q_func, opt, rbuf, gamma=args.gamma, explorer=explorer, replay_start_size=args.replay_start_size, target_update_interval=args.target_update_interval, update_interval=args.update_interval, minibatch_size=args.minibatch_size, target_update_method=args.target_update_method, soft_update_tau=args.soft_update_tau, ) t_offset = 0 if args.load: # Continue training model or load for evaluation agent.load(args.load) rbuf.load(os.path.join(args.load, 'replay_buffer.pkl')) try: t_offset = int(os.path.basename(args.load).split('_')[0]) except TypeError: with open(os.path.join(args.load, 't.txt'), 'r') as fh: data = fh.readlines() t_offset = int(data[0]) except ValueError: t_offset = 0 eval_env = make_env(test=True) if args.evaluate: eval_stats = experiments.eval_performance( env=eval_env, agent=agent, n_steps=None, n_episodes=args.eval_n_runs, max_episode_len=timestep_limit) print('n_runs: {} mean: {} median: {} stdev {}'.format( args.eval_n_runs, eval_stats['mean'], eval_stats['median'], eval_stats['stdev'])) else: criterion = 'steps' # can be made an argument if we support any other form of checkpointing l = logging.getLogger('Checkpoint_Hook') def checkpoint(env, agent, step): if criterion == 'steps': if step % args.checkpoint_frequency == 0: save_agent_and_replay_buffer( agent, step, args.outdir, suffix='_chkpt', logger=l, chckptfrq=args.checkpoint_frequency) else: # TODO seems to checkpoint given wall_time we would have to modify the environment such that it tracks # time or number of episodes raise NotImplementedError def eval_hook(env, agent, step): """ Necessary hook to evaluate the DDQN on all 100 Training instances. :param env: The training environment :param agent: (Partially) Trained agent :param step: Number of observed training steps. :return: """ if step % 10 == 0: # train_reward = 0 for _ in range(100): obs = env.reset() done = False rews = 0 while not done: obs, r, done, _ = env.step(agent.act(obs)) rews += r train_reward += rews train_reward = train_reward / 100 with open(os.path.join(args.outdir, 'train_reward.txt'), 'a') as fh: fh.writelines(str(train_reward) + '\t' + str(step) + '\n') hooks = [checkpoint] if args.scenario == '1D-INST': hooks.append(eval_hook) experiments.train_agent_with_evaluation( agent=agent, env=env, steps=args.steps, eval_n_steps= None, # unlimited number of steps per evaluation rollout eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval, outdir=args.outdir, eval_env=eval_env, train_max_episode_len=timestep_limit, step_hooks=hooks, step_offset=t_offset)
def main(args): import logging logging.basicConfig(level=logging.INFO, filename='log') if (type(args) is list): args = make_args(args) # Set a random seed used in ChainerRL misc.set_random_seed(args.seed, gpus=(args.gpu, )) if not os.path.exists(args.outdir): os.makedirs(args.outdir) def clip_action_filte(a): return np.clip(a, action_space.low, action_space.high) def make_env(test): env = gym.make(args.env) # Use different random seeds for train and test envs env_seed = 2**32 - 1 - args.seed if test else args.seed env.seed(env_seed) env = chainerrl.wrappers.CastObservationToFloat32(env) # atari env = atari_wrappers.FireResetEnvAuto(env) env = atari_wrappers.EpisodicLifeEnv(env) env = atari_wrappers.FrameStackRam(env, args.stack_k) env = atari_wrappers.MaxAndSkipEnvRam(env) if isinstance(env.action_space, spaces.Box): misc.env_modifiers.make_action_filtered(env, clip_action_filter) if not test: # Scale rewards (and thus returns) to a reasonable range so that # training is easier env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor) return env env = make_env(test=False) obs_space = env.observation_space obs_size = obs_space.low.size * args.stack_k action_space = env.action_space if isinstance(action_space, spaces.Box): print("Use NAF to apply DQN to continuous action spaces") action_size = action_space.low.size # Use NAF to apply DQN to continuous action spaces q_func = q_functions.FCQuadraticStateQFunction( obs_size, action_size, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers, action_space=action_space) # Use the Ornstein-Uhlenbeck process for exploration ou_sigma = (action_space.high - action_space.low) * 0.2 explorer = explorers.AdditiveOU(sigma=ou_sigma) else: print("not continuous action spaces") n_actions = action_space.n q_func = q_functions.FCStateQFunctionWithDiscreteAction( obs_size, n_actions, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers) # Use epsilon-greedy for exploration explorer = explorers.LinearDecayEpsilonGreedy( args.start_epsilon, args.end_epsilon, args.final_exploration_steps, action_space.sample) if args.noisy_net_sigma is not None: links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma) # Turn off explorer explorer = explorers.Greedy() opt = optimizers.Adam() opt.setup(q_func) rbuf_capacity = 5 * 10**5 if args.minibatch_size is None: args.minibatch_size = 32 if args.prioritized_replay: betasteps = (args.steps - args.replay_start_size) \ // args.update_interval rbuf = replay_buffer.PrioritizedReplayBuffer(rbuf_capacity, betasteps=betasteps) else: rbuf = replay_buffer.ReplayBuffer(rbuf_capacity) agent = DoubleDQN( q_func, opt, rbuf, gpu=args.gpu, gamma=args.gamma, explorer=explorer, replay_start_size=args.replay_start_size, target_update_interval=args.target_update_interval, update_interval=args.update_interval, minibatch_size=args.minibatch_size, target_update_method=args.target_update_method, soft_update_tau=args.soft_update_tau, ) if args.load_agent: agent.load(args.load_agent) eval_env = make_env(test=True) if (args.mode == 'train'): experiments.train_agent_with_evaluation( agent=agent, env=env, steps=args.steps, eval_n_steps=None, eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval, outdir=args.outdir, eval_env=eval_env, step_offset=args.step_offset, checkpoint_freq=args.checkpoint_freq, train_max_episode_len=args.max_frames, eval_max_episode_len=args.max_frames, log_type=args.log_type) elif (args.mode == 'check'): return tools.make_video.check(env=env, agent=agent, max_num=args.max_frames, save_mp4=args.save_mp4) elif (args.mode == 'growth'): return tools.make_video.growth(env=env, agent=agent, outdir=args.outdir, max_num=args.max_frames, save_mp4=args.save_mp4)
def make_dqn_agent(self, env, q_func, opt, explorer, rbuf, gpu): return DoubleDQN( q_func, opt, rbuf, gpu=gpu, gamma=0.9, explorer=explorer, replay_start_size=100, target_update_frequency=100, episodic_update=True)