Exemple #1
0
def predict(model, model_path, dataset, gpu, in_episodes, out_episodes, out,
            start_from, images_num):
    if gpu >= 0:
        info("Using GPU %d" % gpu)
        chainer.cuda.get_device_from_id(gpu).use()
        model.to_gpu()
    else:
        info("Using CPU")

    chainer.serializers.load_npz(model_path, model)

    os.makedirs(out, exist_ok=True)

    chainer.config.train = False

    info("Forwarding")

    xp = model.xp
    for n in range(start_from, images_num):
        data = dataset[n]
        in_data, next_data = data[:in_episodes], data[in_episodes:in_episodes +
                                                      out_episodes]
        in_data, next_data = in_data[np.newaxis, :], next_data[np.newaxis, :]

        in_data = chainer.Variable(in_data)
        if gpu >= 0:
            with chainer.cuda.get_device_from_id(gpu):
                in_data.to_gpu()

        out_data = model(in_data)
        reconst, pred = out_data[0], out_data[1]

        fig = plt.figure()

        ax = fig.add_subplot(2, 2, 1)
        ax = vis_episode(in_data, ax=ax, title="Input")

        ax = fig.add_subplot(2, 2, 2)
        ax = vis_episode(next_data, ax=ax, title="Predicted Ground Truth")

        ax = fig.add_subplot(2, 2, 3)
        ax = vis_episode(reconst, ax=ax, title="Reconstruction")

        ax = fig.add_subplot(2, 2, 4)
        ax = vis_episode(pred, ax=ax, title="Prediction")

        out_path = os.path.join(out, "result_%03d.png" % n)
        plt.savefig(out_path, bbox_inches="tight", dpi=160)
        info("saved to %s" % out_path)
        plt.close(fig)
Exemple #2
0
def show_dataset(index, split, vertical, out):
    dataset = chainervr.datasets.UCF101Dataset(split=split)

    in_data = dataset[index]

    ax = vis_episode(in_data, vertical=vertical)
    plt.title("index %s" % index)
    plt.savefig(out, bbox_inches="tight", dpi=300)
    print("Saved to %s" % out)
Exemple #3
0
def detect(model_path, features_path, input_num, top_n, gpu, out, split,
           in_episodes, out_episodes, hidden_channels):
    """Extract hidden features for each data in dataset"""
    import chainer
    import chainervr
    import os
    import numpy as np
    import pandas as pd
    from sklearn.metrics.pairwise import cosine_similarity
    import matplotlib.pyplot as plt

    assert in_episodes == out_episodes

    model = chainervr.models.DeepEpisodicMemory(
        hidden_channels=hidden_channels, num_episodes=in_episodes)

    model.reset_state()

    if gpu >= 0:
        P.info("Using GPU %d" % gpu)
        chainer.cuda.get_device_from_id(gpu).use()
        model.to_gpu()
    else:
        P.info("Using CPU")

    chainer.serializers.load_npz(model_path, model)

    P.info("Loading dataset")

    dataset = chainervr.datasets.MovingMnistDataset(split=split,
                                                    channels_num=3)

    os.makedirs(out, exist_ok=True)

    chainer.config.train = False

    P.info("Loading features")
    features = np.load(features_path)["features"]

    P.info("Forwarding: %d" % input_num)

    in_data = dataset[input_num][:in_episodes][np.newaxis, :]
    in_data = chainer.Variable(in_data)
    if gpu >= 0:
        with chainer.cuda.get_device_from_id(gpu):
            in_data.to_gpu()

    # forwarding
    _, _, hidden = model(in_data)
    if gpu >= 0:
        hidden.to_cpu()
    feature = hidden.array.reshape(-1)

    # compute similarities
    similarities = cosine_similarity(
        features, np.broadcast_to(feature, (len(dataset), feature.shape[0])))
    similarities = np.diag(similarities)
    ranking = (-similarities).argsort()

    rows = top_n + 1
    fig = plt.figure(figsize=(3, rows))

    ax = fig.add_subplot(rows, 1, 1)
    ax = vis_episode(in_data, ax=ax, title="Input")

    for n in range(top_n):
        index = ranking[n]
        similarity = similarities[index]
        comp_data = dataset[index][:in_episodes][np.newaxis, :]

        ax = fig.add_subplot(rows, 1, n + 2)
        ax = vis_episode(comp_data,
                         ax=ax,
                         title="Top %d (index: %d, similarity: %f)" %
                         (n + 1, index, similarity))

    os.makedirs(out, exist_ok=True)
    out_path = os.path.join(out, "rank.png")
    plt.savefig(out_path, bbox_inches="tight", dpi=300)
    P.info("saved to %s" % out_path)
    plt.close(fig)
Exemple #4
0
        data = utils.load_episode(videoname,
                                  num_episodes=self.num_episodes)
        if self.with_class:
            return data, cls
        else:
            return data


if __name__ == '__main__':
    import os
    if not os.getenv("DISPLAY", None):
        import matplotlib
        matplotlib.use("Agg")
    import matplotlib.pyplot as plt
    from chainervr.visualizations import vis_episode

    dataset = UCF101Dataset()

    fig = plt.figure()

    n = 10
    for i in range(n):
        idx = (len(dataset) // n) * i
        episode, cls = dataset[idx]
        cls_str = utils.ucf101_class_names[cls]
        ax = fig.add_subplot(n, 1, i+1)
        vis_episode(episode, ax=ax, title=cls_str, fontsize=4)

    plt.savefig("image.jpg", bbox_inches="tight", dpi=300)
    plt.close()
Exemple #5
0
def predict_summary(model,
                    model_dir,
                    dataset,
                    gpu,
                    in_episodes,
                    out_episodes,
                    out,
                    image_num,
                    skip_num=None):
    if gpu >= 0:
        info("Using GPU %d" % gpu)
        chainer.cuda.get_device_from_id(gpu).use()
        model.to_gpu()
    else:
        info("Using CPU")

    glob_ex = os.path.join(model_dir, "model_iter_")
    model_paths = glob.glob(glob_ex + "*")
    model_paths.sort(key=lambda s: int(s[len(glob_ex):]))
    if skip_num is not None:
        model_paths = model_paths[::skip_num]
    info("Found %d models" % len(model_paths))

    data = dataset[image_num]
    in_data, next_data = data[:in_episodes], data[in_episodes:in_episodes +
                                                  out_episodes]
    in_data, next_data = in_data[np.newaxis, :], next_data[np.newaxis, :]

    in_data = chainer.Variable(in_data)
    if gpu >= 0:
        with chainer.cuda.get_device_from_id(gpu):
            in_data.to_gpu()

    rows = len(model_paths) + 1
    fig = plt.figure(figsize=(3, rows))
    i = 1

    ax = fig.add_subplot(rows, 2, i)
    ax = vis_episode(in_data, ax=ax, title="Input")
    i += 1

    ax = fig.add_subplot(rows, 2, i)
    ax = vis_episode(in_data, ax=ax, title="Predicted Ground Truth")
    i += 1

    for model_path in model_paths:
        model_name = os.path.basename(model_path)
        chainer.serializers.load_npz(model_path, model)
        chainer.config.train = False

        out_data = model(in_data)
        reconst, pred = out_data[0], out_data[1]

        ax = fig.add_subplot(rows, 2, i)
        ax = vis_episode(reconst, ax=ax, title="%s Reconst" % model_name)
        i += 1

        ax = fig.add_subplot(rows, 2, i)
        ax = vis_episode(pred, ax=ax, title="%s Pred" % model_name)
        i += 1
        info("Generated image using %s" % model_path)

    os.makedirs(out, exist_ok=True)
    out_path = os.path.join(out, "summary.png")
    plt.savefig(out_path, bbox_inches="tight", dpi=300)
    info("saved to %s" % out_path)
    plt.close(fig)
Exemple #6
0
            channels_num = 3
        self.channels_num = channels_num

    def __len__(self):
        return self.dataset.shape[0]

    def get_example(self, i):
        data = self.dataset[i]  # FHW
        data = np.broadcast_to(data,
                               (self.channels_num, ) + data.shape)  # CFHW
        # CFHW -> FCHW
        return data.transpose((1, 0, 2, 3))


if __name__ == '__main__':
    import os
    if not os.getenv("DISPLAY", None):
        import matplotlib
        matplotlib.use('Agg')
    from chainervr.visualizations import vis_episode
    import matplotlib.pyplot as plt

    dataset = MovingMnistDataset()
    for i, frames in enumerate(dataset):
        vis_episode(frames)
        plt.title("Dataset %d/%d" % (i, len(dataset)))
        fname = "image_%05d.jpg" % i
        plt.savefig(fname, dpi=300, bbox_inches="tight")
        print("Saved to %s" % fname)
        plt.close(plt.figure())