Exemple #1
0
    def test_beam(self):
        src_voc = Vocabulary()
        trg_voc = Vocabulary()
        for tok in "</s> I am Philip You are a".split():
            src_voc[tok]
        for tok in "</s> 私 は フィリップ です 1 2 3".split():
            trg_voc[tok]
        model = EncDecNMT(Args("attn"), src_voc, trg_voc, optimizer=optimizers.SGD())

        model_out = "/tmp/model-nmt.temp"
        X, Y  = src_voc, trg_voc
        
        # Train with 1 example
        src = np.array([[X["I"], X["am"], X["Philip"]]], dtype=np.int32)
        trg = np.array([[Y["私"], Y["は"], Y["フィリップ"], Y["です"]]], dtype=np.int32)
        
        model.train(src, trg)
            
        # Save
        serializer = ModelSerializer(model_out)
        serializer.save(model)

        # Load
        model1 = EncDecNMT(InitArgs(model_out))
        k      = model.classify(src, beam=10)
Exemple #2
0
 def test_NMT_2_read_write(self):
     for model in ["encdec", "attn"]:
         src_voc = Vocabulary()
         trg_voc = Vocabulary()
         for tok in "</s> I am Philip".split():
             src_voc[tok]
         for tok in "</s> 私 は フィリップ です".split():
             trg_voc[tok]
         model = EncDecNMT(Args(model), src_voc, trg_voc, optimizer=optimizers.SGD())
 
         model_out = "/tmp/nmt/tmp"
         X, Y  = src_voc, trg_voc
         
         # Train with 1 example
         src = np.array([[X["I"], X["am"], X["Philip"]]], dtype=np.int32)
         trg = np.array([[Y["私"], Y["は"], Y["フィリップ"], Y["です"]]], dtype=np.int32)
         
         model.train(src, trg)
             
         # Save
         serializer = ModelSerializer(model_out)
         serializer.save(model)
 
         # Load
         model1 = EncDecNMT(InitArgs(model_out))
             
         # Check
         self.assertModelEqual(model._model, model1._model)