def l2reg_model(cnt_features): return Model(network=Sequence(cnt_features=cnt_features, layers=[ Dense(20), ReLu(), Dense(3), ReLu(), Dense(1), ], classifier=SigmoidBinaryClassifier(), regularizer=L2Regularizer(lambd=0.7)), training=batch_gd)
def model(cnt_features): return Model(network=Sequence( cnt_features=cnt_features, layers=[ Dense(5), ReLu(), Dense(2), ReLu(), Dense(1), ], classifier=SigmoidBinaryClassifier(), ))
def default_model(cnt_features): return Model(network=Sequence( cnt_features=cnt_features, layers=[ Dense(20), ReLu(), Dense(3), ReLu(), Dense(1), ], classifier=SigmoidBinaryClassifier(), ), training=batch_gd)
def model(cnt_features): return Model(network=Sequence( cnt_features=cnt_features, layers=[ Dense(25), ReLu(), Dense(12), ReLu(), Dense(6), ], classifier=SoftmaxClassifier(classes=6), ), training=MiniBatchTraining(batch_size=32, optimizer=AdamOptimizer(0.0001), listener=CostListener()))