Exemple #1
0
    def test_block_iter0(self):
        files = match_img_files(self.class_dir)

        block_iter = _block_iter(
            block_tensor=files,
            label=self.label,
            block_length=2,
            block_bound=False,
            sample_block_random=False,
            seed=None,
        )

        labels = [self.label] * len(files)
        files_list = list(zip(files, labels))
        block_list = list(block_iter)
        self.assertEqual(block_list, files_list)
Exemple #2
0
def _interleave_fn_image_files(
    input_dir,
    label,
    block_length,
    block_bound=True,
    sample_block_random=False,
    seed=None,
):
    img_files = match_img_files(input_dir)
    block_iter = _block_iter(
        img_files,
        label,
        block_length=block_length,
        block_bound=block_bound,
        sample_block_random=sample_block_random,
        seed=seed,
    )
    return block_iter
Exemple #3
0
    def test_block_iter1(self):
        """ test block bound"""
        files = match_img_files(self.class_dir)

        block_len = 2

        block_iter = _block_iter(
            block_tensor=files,
            label=self.label,
            block_length=block_len,
            block_bound=True,
            sample_block_random=False,
            seed=None,
        )

        labels = [self.label] * len(files)
        files_list = list(zip(files, labels))[:block_len]
        block_list = list(block_iter)
        self.assertEqual(block_list, files_list)
Exemple #4
0
def _interleave_fn_image_triplet_files(
    input_dir,
    label,
    block_length,
    block_bound=True,
    sample_block_random=False,
    seed=None,
):

    img_files = match_img_files(input_dir)

    # if no images found in folder, assume it is a triplet folder
    if tf.shape(img_files)[0] == 0:
        triplets = match_img_files_triplet(input_dir)
        block_iter = _block_iter_triplet(
            triplets,
            label,
            block_length=block_length,
            block_bound=block_bound,
            sample_block_random=sample_block_random,
            seed=seed,
        )
        # call .repeat(1) to make it a RepeatDataset, so both if/else branches are same dataset type.
        block_iter = block_iter.repeat(1)
    else:
        block_iter = _block_iter(
            img_files,
            label,
            block_length=block_length,
            block_bound=block_bound,
            sample_block_random=sample_block_random,
            seed=seed,
        )
        # call .repeat(1) to make it a RepeatDataset, so both if/else branches are same dataset type.
        block_iter = block_iter.repeat(1)

    return block_iter
Exemple #5
0
 def flat_map_fn(input_dir, label):
     files = match_img_files(input_dir)
     n_files = tf.shape(files)[0]
     y = tf.tile([label], [n_files])
     return tf.data.Dataset.from_tensor_slices((files, y))
Exemple #6
0
 def test_read_img_files_shape(self):
     files = match_img_files(img_folder)
     self.assertAllEqual(tf.shape(files), (3, ))