Exemple #1
0
def test_triangle_init():
    """Assert that initialization checks lower and upper bounds."""
    # Should just run
    u = cp.Uniform(0., 1.)
    t = cp.Triangle(u - 1., u, u + 1.)
    cp.J(u, t)

    # Overlapping lb and ub
    with pytest.raises(ValueError):
        cp.Triangle(u - 0.5, u, u + 1.)
    with pytest.raises(ValueError):
        cp.Triangle(u - 1., u, u + 0.5)

    # Should initialize fine
    cp.Triangle(u - 1., 0., u + 0.5)
#!/usr/bin/env python

from __future__ import print_function
import openturns as ot
import chaospy as cp
import numpy as np

# A chaospy Triangle distribution
d0 = cp.Triangle(2.0, 3.5, 4.0)
d1 = cp.Kumaraswamy(2.0, 3.0, -1.0, 4.0)
d2 = cp.J(d0, d1)
for chaospy_dist in [d0, d1, d2]:
    np.random.seed(42)

    # create an openturns distribution
    py_dist = ot.ChaospyDistribution(chaospy_dist)
    distribution = ot.Distribution(py_dist)

    print('distribution=', distribution)
    print('realization=', distribution.getRealization())
    sample = distribution.getSample(10)
    print('sample=', sample[0:5])
    point = [2.6]*distribution.getDimension()
    print('pdf= %.6g' % distribution.computePDF(point))
    cdf = distribution.computeCDF(point)
    print('cdf= %.6g' % cdf)
    print('mean=', distribution.getMean())
    print('mean(sampling)=', sample.computeMean())
    print('std=', distribution.getStandardDeviation())
    print('std(sampling)=', sample.computeStandardDeviationPerComponent())
    print('skewness=', distribution.getSkewness())
Exemple #3
0
                                     delimiter='$',
                                     target_filename='input.json')
decoder = uq.decoders.JSONDecoder(target_filename='output.json',
                                  output_columns=['g1'])
execute = ExecuteLocal('{}/beam input.json'.format(os.getcwd()))

actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute,
                  Decode(decoder))

campaign = uq.Campaign(name='beam', params=params, actions=actions)

vary = {
    "F": cp.Normal(1, 0.1),
    "L": cp.Normal(1.5, 0.01),
    "a": cp.Uniform(0.7, 1.2),
    "D": cp.Triangle(0.75, 0.8, 0.85)
}

campaign.set_sampler(uq.sampling.PCESampler(vary=vary, polynomial_order=1))

with QCGPJPool(
        template_params={'venv': '/home/bartek/.virtualenv/qcgpj7'}) as qcgpj:
    #with QCGPJPool() as qcgpj:
    campaign.execute(pool=qcgpj).collate()

campaign.get_collation_result()

campaign.campaign_db.dump()

results = campaign.analyse(qoi_cols=['g1'])
results.plot_sobols_treemap('g1', figsize=(10, 10))