Exemple #1
0
def best_case_quicksort(A, p, r):
    if p < r:
        n = r - p + 1
        select(A, p, r, (n + 1) // 2)
        q = (p + r) // 2
        best_case_quicksort(A, p, q - 1)
        best_case_quicksort(A, q + 1, r)
Exemple #2
0
def median_neighbors(A, k):
    n = A.length
    m = math.floor((n + 1) / 2)
    leftmost = select(A, 1, n, m - math.floor((k - 1) / 2))
    rightmost = select(A, 1, n, m + math.ceil((k - 1) / 2))
    N = set()
    for i in between(1, n):
        if leftmost <= A[i] <= rightmost:
            N.add(A[i])
    return N
Exemple #3
0
def quantiles(A, p, r, k):
    if k == 1:
        return set()
    n = r - p + 1
    q1 = p + math.floor(math.floor(k / 2) * (n / k))
    q2 = p + math.floor(math.ceil(k / 2) * (n / k))
    select(A, p, r, q1 - p + 1)
    if q1 != q2:
        select(A, q1 + 1, r, q2 - q1)
    L = quantiles(A, p, q1 - 1, math.floor(k / 2))
    R = quantiles(A, q2 + 1, r, math.floor(k / 2))
    return L | {A[q1], A[q2]} | R
Exemple #4
0
def median_nearest(A, k):
    n = A.length
    x = select(A, 1, n, math.floor((n + 1) / 2))
    dist = Array.indexed(1, n)
    for i in between(1, n):
        dist[i] = abs(A[i] - x)
    y = select(dist, 1, n, k)
    N = set()
    for i in between(1, n):
        if abs(A[i] - x) <= y:
            N.add(A[i])
    if len(N) == k + 1:
        N.remove(x + y)
    return N
Exemple #5
0
def _effective_fractional_knapsack(items, K, W):
    n = items.length
    if n == 0:
        return K
    unit_values = Array([item.value / item.weight for item in items])
    m = select(unit_values, 1, n, math.floor((n + 1) / 2))
    G = Array([item for item in items if item.value / item.weight > m])
    E = Array([item for item in items if item.value / item.weight == m])
    L = Array([item for item in items if item.value / item.weight < m])
    w_G = sum([item.weight for item in G])
    w_E = sum([item.weight for item in E])
    if w_G >= W:
        return _effective_fractional_knapsack(G, K, W)
    for item in G:
        K[item.id] = item.weight
    weight_sum = w_G
    for item in E:
        if weight_sum + item.weight > W:
            K[item.id] = W - weight_sum
            break
        K[item.id] = item.weight
        weight_sum += item.weight
    if w_G + w_E >= W:
        return K
    else:
        return _effective_fractional_knapsack(L, K, W - w_G - w_E)
Exemple #6
0
    def test_select(self):
        array, elements = get_random_array()
        i = random.randint(1, array.length)

        actual_order_statistic = select(array, 1, array.length, i)

        expected_order_statistic = sorted(elements)[i - 1]
        assert_that(actual_order_statistic, is_(equal_to(expected_order_statistic)))
Exemple #7
0
    def test_select(self):
        array, elements = get_random_array()
        i = random.randint(1, array.length)

        actual_order_statistic = select(array, 1, array.length, i)

        expected_order_statistic = sorted(elements)[i - 1]
        assert_that(actual_order_statistic,
                    is_(equal_to(expected_order_statistic)))
Exemple #8
0
def delete_larger_half(S):
    A = _transform_to_array(S)
    M = select(A, 1, A.length, (A.length + 1) // 2)
    size = A.length
    x = S.head
    while x is not None:
        if x.key > M:
            list_delete(S, x)
            size -= 1
        x = x.next
    x = S.head
    while size > A.length // 2:
        if x.key == M:
            list_delete(S, x)
            size -= 1
        x = x.next
Exemple #9
0
def _select_with_cascaded_swaps(B, m, p, r, i):
    n = r - p + 1
    if n == 1:
        return p
    fives = [Array(B.elements[k:min(k + 5, r)]) for k in range(p - 1, r, 5)]
    for group in fives:
        insertion_sort(group)
    medians = Array([group[(group.length + 1) // 2] for group in fives])
    x = select(medians, 1, medians.length, (medians.length + 1) // 2)
    q = _partition_around_with_cascaded_swaps(B, m, p, r, x)
    k = q - p + 1
    if i == k:
        return q
    elif i < k:
        return _select_with_cascaded_swaps(B, m, p, q - 1, i)
    else:
        return _select_with_cascaded_swaps(B, m, q + 1, r, i - k)
Exemple #10
0
def _partition_around_median(A, w, p, r):
    n = r - p + 1
    median = select(Array(A.elements), p, r, (n + 1) // 2)  # we pass a copy of A because it will be modified in select
    q = p
    while A[q] != median:
        q += 1
    A[q], A[r] = A[r], A[q]
    w[q], w[r] = w[r], w[q]
    i = p - 1
    for j in between(p, r - 1):
        if A[j] <= median:
            i = i + 1
            A[i], A[j] = A[j], A[i]
            w[i], w[j] = w[j], w[i]
    A[i + 1], A[r] = A[r], A[i + 1]
    w[i + 1], w[r] = w[r], w[i + 1]
    return i + 1
Exemple #11
0
def _get_median_blackbox(A, p, r):
    n = r - p + 1
    return select(A, p, r, (n + 1) // 2)