Exemple #1
0
def _test_train_urls():
    mynet = Network(3, 4, 3)
    mynet.create_connections()
    #mynet.feed_forward([1,1,1])
    #print(mynet.output_ouputs)
    print(mynet.matrix_wih)
    print(mynet.matrix_who)
    for i in range(1000):
        #print('='*20)
        mynet.train([1, 0, 1], [1, 0, 0])
        #print(mynet.matrix_wih)
        #print(mynet.matrix_who)
        # print('='*30)
        # for i in range(30):
        mynet.train([0, 1, 1], [0, 1, 0])
        # print('='*30)
        # for i in range(30):
        mynet.train([1, 0, 0], [0, 0, 1])
    print('Results:')
    mynet.feed_forward([1, 0, 1])
    print('{} expected {}'.format(mynet.output_ouputs, [1, 0, 0]))
    mynet.feed_forward([0, 1, 1])
    print('{} expected {}'.format(mynet.output_ouputs, [0, 1, 0]))
    mynet.feed_forward([1, 0, 1])
    print('{} expected {}'.format(mynet.output_ouputs, [1, 0, 0]))
    mynet.feed_forward([0, 0, 1])
    print('{} expected {}'.format(mynet.output_ouputs, [1, 0, 0]))
Exemple #2
0
def _test_result_from_taring():
    mynet = Network(3, 2, 3)
    mynet.create_connections()
    mynet.feed_forward([1, 1, 1])
    print(mynet.output_ouputs)
    target = [1, 0, 0]
    mynet.back_propagate(target)
    mynet.feed_forward([1, 1, 0])
    print(mynet.output_ouputs)
Exemple #3
0
def _test_back_propagate():
    mynet = Network(4, 2, 3)
    mynet.create_connections()
    mynet.feed_forward([1, 1, 1, 1])
    print(mynet.output_ouputs)
    mynet.matrix_who = np.matrix([[0.11, 0.12, 0.13], [0.21, 0.22, 0.23]])
    mynet.output_ouputs = np.matrix([[0.1, 0.2, 0.3]])
    target = [0.9, 0.8, 0.7]
    mynet.back_propagate(target)
Exemple #4
0
def _test_ouput_deltas():
    mynet = Network(4, 2, 3)
    mynet.create_connections()
    mynet.feed_forward([1, 1, 1, 1])
    print(mynet.output_ouputs)
    mynet.matrix_who = np.matrix([[0.11, 0.12, 0.13], [0.21, 0.22, 0.23]])
    mynet.output_ouputs = np.matrix([[0.1, 0.2, 0.3]])
    target = [0.9, 0.8, 0.7]
    ods = mynet.get_output_deltas(target)
    np.testing.assert_array_almost_equal(
        np.matrix([(0.9 - 0.1) * mynet.gradient(0.1),
                   (0.8 - 0.2) * mynet.gradient(0.2),
                   (0.7 - 0.3) * mynet.gradient(0.3)]), ods)
Exemple #5
0
def _test_train_31():
    mynet = Network(3, 3, 1)
    mynet.create_connections()
    print(mynet.matrix_wih)
    print(mynet.matrix_who)
    for i in range(10000):
        mynet.train([0, 0, 1], [0], learning_rate=1)
        # print(mynet.matrix_wih)
        # print(mynet.matrix_who)
        mynet.train([1, 1, 1], [1], learning_rate=1)
        mynet.train([1, 0, 1], [1], learning_rate=1)
        mynet.train([0, 1, 1], [0], learning_rate=1)
    mynet.feed_forward([1, 0, 0])
    print('[1,0,0]= %s' % mynet.output_ouputs)
    mynet.feed_forward([1, 0, 0])
    print('[0,0,0]= %s' % mynet.output_ouputs)
Exemple #6
0
def _test_hidden_deltas():
    mynet = Network(4, 2, 3)
    mynet.create_connections()
    mynet.feed_forward([1, 1, 1, 1])
    print(mynet.output_ouputs)
    mynet.matrix_who = np.matrix([[0.11, 0.12, 0.13], [0.21, 0.22, 0.23]])
    mynet.output_ouputs = np.matrix([[0.1, 0.2, 0.3]])
    target = [0.9, 0.8, 0.7]
    ods = mynet.get_output_deltas(target)
    mynet.matrix_who = np.matrix([[1, 2, 3], [4, 5, 6]])
    mynet.hidden_outputs = np.matrix([[0.5, 0.6]])
    ods = np.matrix([[0.05, 0.06, 0.07]])
    hds = mynet.get_hidden_deltas(ods)

    np.testing.assert_array_almost_equal(
        np.matrix([mynet.gradient(0.5) * 0.38,
                   mynet.gradient(0.6) * 0.92]), hds)
Exemple #7
0
def _test_update_who():
    mynet = Network(3, 4, 3)
    mynet.create_connections()

    mynet.matrix_who = np.matrix([[-0.5910955, 0.75623487, -0.94522481],
                                  [0.34093502, -0.1653904, 0.11737966],
                                  [-0.71922612, -0.60379702, 0.60148914],
                                  [0.93652315, -0.37315164, 0.38464523]])

    d = [0.40795614, 0.62674606, 0.23841622, 0.49377636]
    d = [1, 2, 3]
    mynet.hidden_outputs = np.array(d, dtype=float)
    output_deltas = np.array([0.10676222, -0.11685494, -0.12631629],
                             dtype=float)
    # c = output_deltas * h
    #result is addition of c to each row of matric_who
    matrix_who_expected = np.matrix([[-0.56931835, 0.73239903, -0.97099057],
                                     [0.37439142, -0.20200958, 0.07779554],
                                     [-0.7064992, -0.61772708, 0.58643121],
                                     [0.96288148, -0.40200175, 0.35345923]])
    mynet.update_hidden_output_weight_new(output_deltas, 0.5)
    assert mynet.matrix_who == matrix_who_expected
Exemple #8
0
def _test_train_xor_1o():
    mynet = Network(2, 3, 1)
    mynet.create_connections()
    # print(mynet.matrix_wih)
    # print(mynet.matrix_who)
    for i in range(1000):
        # 1 xor 1 = 0 [prob 0, prob1]
        mynet.train([1, 1], [0], learning_rate=1)
        # print(mynet.matrix_wih)
        # print(mynet.matrix_who)https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/
        mynet.train([1, 0], [1], learning_rate=1)
        mynet.train([0, 0], [0], learning_rate=1)
        # mynet.train([0, 1], [1], learning_rate=1)
    mynet.feed_forward([1, 1])
    print('[1,1]= %s' % mynet.output_ouputs)
    mynet.feed_forward([0, 0])
    print('[0,0]= %s' % mynet.output_ouputs)
    mynet.feed_forward([1, 0])
    print('[1,0]= %s' % mynet.output_ouputs)
    mynet.feed_forward([0, 1])
    print('[0,1]= %s' % mynet.output_ouputs)
    mynet.feed_forward([1, 1])
    print('[1,1]= %s' % mynet.output_ouputs)
Exemple #9
0
def _test_forward():
    mynet = Network(2, 1, 3)
    mynet.create_connections()
    mynet.feed_forward([1, 1])
    print(mynet.output_ouputs)