Exemple #1
0
    def run_day_of_month_analysis(self, strat):
        from pythalesians.economics.seasonality.seasonality import Seasonality
        from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs

        tsc = TimeSeriesCalcs()
        seas = Seasonality()
        strat.construct_strategy()
        pnl = strat.get_strategy_pnl()

        # get seasonality by day of the month
        pnl = pnl.resample('B').mean()
        rets = tsc.calculate_returns(pnl)
        bus_day = seas.bus_day_of_month_seasonality(rets, add_average = True)

        # get seasonality by month
        pnl = pnl.resample('BM').mean()
        rets = tsc.calculate_returns(pnl)
        month = seas.monthly_seasonality(rets)

        self.logger.info("About to plot seasonality...")
        gp = GraphProperties()
        pf = PlotFactory()

        # Plotting spot over day of month/month of year
        gp.color = 'Blues'
        gp.scale_factor = self.SCALE_FACTOR
        gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality day of month.png'
        gp.html_file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality day of month.html'
        gp.title = strat.FINAL_STRATEGY + ' day of month seasonality'
        gp.display_legend = False
        gp.color_2_series = [bus_day.columns[-1]]
        gp.color_2 = ['red'] # red, pink
        gp.linewidth_2 = 4
        gp.linewidth_2_series = [bus_day.columns[-1]]
        gp.y_axis_2_series = [bus_day.columns[-1]]

        pf.plot_line_graph(bus_day, adapter = self.DEFAULT_PLOT_ENGINE, gp = gp)

        gp = GraphProperties()

        gp.scale_factor = self.SCALE_FACTOR
        gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality month of year.png'
        gp.html_file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality month of year.html'
        gp.title = strat.FINAL_STRATEGY + ' month of year seasonality'

        pf.plot_line_graph(month, adapter = self.DEFAULT_PLOT_ENGINE, gp = gp)

        return month
Exemple #2
0
    def g10_line_plot_gdp(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        gdp = self.get_GDP_QoQ(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 GDP"
        gp.units = 'Rebased'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(
            gp.scale_factor) + '.png'
        gdp.columns = [x.split('-')[0] for x in gdp.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United Kingdom']

        from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs
        tsc = TimeSeriesCalcs()
        gdp = gdp / 100
        gdp = tsc.create_mult_index_from_prices(gdp)
        pf.plot_generic_graph(gdp, type='line', adapter='pythalesians', gp=gp)
Exemple #3
0
    def plot_single_var_regression(self, y, x, y_variable_names, x_variable_names, statistic,
                                          tag = 'stats',
                                          title = None,
                                          pretty_index = None, output_path = None,
                                          scale_factor = Constants.plotfactory_scale_factor,
                                          silent_plot = False,
                                          shift=[0]):

        if not(isinstance(statistic, list)):
            statistic = [statistic]

        # TODO optimise loop so that we are calculating each regression *once* at present calculating it
        # for each statistic, which is redundant
        for st in statistic:
            stats_df = []

            for sh in shift:
                x_sh = x.shift(sh)
                stats_temp = self.report_single_var_regression(y, x_sh, y_variable_names, x_variable_names, st,
                                                             pretty_index)

                stats_temp.columns = [ x + "_" + str(sh) for x in stats_temp.columns]

                stats_df.append(stats_temp)

            stats_df = pandas.concat(stats_df, axis=1)
            stats_df = stats_df.dropna(how='all')

            if silent_plot: return stats_df

            pf = PlotFactory()
            gp = GraphProperties()

            if title is None: title = statistic

            gp.title = title
            gp.display_legend = True
            gp.scale_factor = scale_factor
            # gp.color = ['red', 'blue', 'purple', 'gray', 'yellow', 'green', 'pink']

            if output_path is not None:
                gp.file_output = output_path + ' (' + tag + ' ' + st + ').png'

            pf.plot_bar_graph(stats_df, adapter = 'pythalesians', gp = gp)

        return stats_df
Exemple #4
0
    def create_graph_properties(self, title, file_add):
        gp = GraphProperties()

        gp.title = self.FINAL_STRATEGY + " " + title
        gp.display_legend = True
        gp.scale_factor = self.SCALE_FACTOR

        if self.DEFAULT_PLOT_ENGINE != 'cufflinks':
            gp.file_output = self.DUMP_PATH + self.FINAL_STRATEGY + ' (' + file_add + ') ' + str(gp.scale_factor) + '.png'

        gp.html_file_output = self.DUMP_PATH + self.FINAL_STRATEGY + ' (' + file_add + ') ' + str(gp.scale_factor) + '.html'

        try:
            gp.silent_display = self.SILENT_DISPLAY
        except: pass

        return gp
    def g10_line_plot_une(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        une = self.get_UNE(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 Unemployment Rate (%)"
        gp.units = '%'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(gp.scale_factor) + '.png'
        une.columns = [x.split('-')[0] for x in une.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United States']

        pf.plot_generic_graph(une, type = 'line', adapter = 'pythalesians', gp = gp)
Exemple #6
0
    def g10_line_plot_une(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        une = self.get_UNE(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 Unemployment Rate (%)"
        gp.units = '%'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(
            gp.scale_factor) + '.png'
        une.columns = [x.split('-')[0] for x in une.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United States']

        pf.plot_generic_graph(une, type='line', adapter='pythalesians', gp=gp)
    def g10_line_plot_gdp(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        gdp = self.get_GDP_QoQ(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 GDP"
        gp.units = 'Rebased'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(gp.scale_factor) + '.png'
        gdp.columns = [x.split('-')[0] for x in gdp.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United Kingdom']

        from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs
        tsc = TimeSeriesCalcs()
        gdp = gdp / 100
        gdp = tsc.create_mult_index_from_prices(gdp)
        pf.plot_generic_graph(gdp, type = 'line', adapter = 'pythalesians', gp = gp)
Exemple #8
0
            cache_algo='internet_load_return')  # how to return data

        ltsf = LightTimeSeriesFactory()

        df = None
        df = ltsf.harvest_time_series(time_series_request)

        tsc = TimeSeriesCalcs()
        df = tsc.calculate_returns(df)
        df = tsc.rolling_corr(df['EURUSD.close'],
                              20,
                              data_frame2=df[['GBPUSD.close', 'AUDUSD.close']])

        gp = GraphProperties()
        gp.title = "1M FX rolling correlations"
        gp.scale_factor = 3

        pf = PlotFactory()
        pf.plot_line_graph(df, adapter='pythalesians', gp=gp)

    ###### download daily data from Bloomberg for AUD/JPY, NZD/JPY spot with S&P500, then calculate correlation
    if True:
        time_series_request = TimeSeriesRequest(
            start_date="01 Jan 2015",  # start date
            finish_date=datetime.date.today(),  # finish date
            freq='daily',  # daily data
            data_source='bloomberg',  # use Bloomberg as data source
            tickers=[
                'AUDJPY',  # ticker (Thalesians)
                'NZDJPY',
                'S&P500'
    def run_arbitrary_sensitivity(self, strat, parameter_list = None, parameter_names = None,
                                  pretty_portfolio_names = None, parameter_type = None):

        asset_df, spot_df, spot_df2, basket_dict = strat.fill_assets()

        port_list = None
        tsd_list = []

        for i in range(0, len(parameter_list)):
            br = strat.fill_backtest_request()

            current_parameter = parameter_list[i]

            # for calculating P&L
            for k in current_parameter.keys():
                setattr(br, k, current_parameter[k])

            strat.br = br   # for calculating signals

            signal_df = strat.construct_signal(spot_df, spot_df2, br.tech_params, br)

            cash_backtest = CashBacktest()
            self.logger.info("Calculating... " + pretty_portfolio_names[i])

            cash_backtest.calculate_trading_PnL(br, asset_df, signal_df)
            tsd_list.append(cash_backtest.get_portfolio_pnl_tsd())
            stats = str(cash_backtest.get_portfolio_pnl_desc()[0])

            port = cash_backtest.get_cumportfolio().resample('B').mean()
            port.columns = [pretty_portfolio_names[i] + ' ' + stats]

            if port_list is None:
                port_list = port
            else:
                port_list = port_list.join(port)

        # reset the parameters of the strategy
        strat.br = strat.fill_backtest_request()

        pf = PlotFactory()
        gp = GraphProperties()

        ir = [t.inforatio()[0] for t in tsd_list]

        # gp.color = 'Blues'
        # plot all the variations
        gp.resample = 'B'
        gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + '.png'
        gp.scale_factor = self.scale_factor
        gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type
        pf.plot_line_graph(port_list, adapter = 'pythalesians', gp = gp)

        # plot all the IR in a bar chart form (can be easier to read!)
        gp = GraphProperties()
        gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + ' IR.png'
        gp.scale_factor = self.scale_factor
        gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type
        summary = pandas.DataFrame(index = pretty_portfolio_names, data = ir, columns = ['IR'])
        pf.plot_bar_graph(summary, adapter = 'pythalesians', gp = gp)

        return port_list
        df = ltsf.harvest_time_series(time_series_request)
        df.columns = [x.replace('.close', '') for x in df.columns.values]

        df = tsc.calculate_returns(df) * 100
        df = df.dropna()

        df_sorted = tsc.get_bottom_valued_sorted(df, "USDBRL", n = 20)
        # df = tsc.get_top_valued_sorted(df, "USDBRL", n = 20) # get biggest up moves

        # get values on day after
        df2 = df.shift(-1)
        df2 = df2.ix[df_sorted.index]
        df2.columns = ['T+1']

        df_sorted.columns = ['T']

        df_sorted = df_sorted.join(df2)
        df_sorted.index = [str(x.year) + '/' + str(x.month) + '/' + str(x.day) for x in df_sorted.index]

        gp = GraphProperties()
        gp.title = 'Largest daily falls in USDBRL'
        gp.scale_factor = 3
        gp.display_legend = True
        gp.chart_type = 'bar'
        gp.x_title = 'Dates'
        gp.y_title = 'Pc'
        gp.file_output = "usdbrl-biggest-downmoves.png"

        pf = PlotFactory()
        pf.plot_line_graph(df_sorted, adapter = 'pythalesians', gp=gp)
    # resample for end of month
    daily_vals = daily_vals.resample('BM')

    daily_vals = daily_vals / daily_vals.shift(1) - 1
    daily_vals.index = [str(x.year) + '/' + str(x.month) for x in daily_vals.index]
    daily_vals = daily_vals.drop(daily_vals.head(1).index)

    pf = PlotFactory()

    gp = GraphProperties()

    gp.source = 'Thalesians/BBG (created with PyThalesians Python library)'
    gp.html_file_output = "output_data/equities.htm"
    gp.title = 'Recent monthly changes in equity markets'
    gp.scale_factor = 2
    gp.display_legend = True
    gp.chart_type = ['bar', 'scatter', 'line']
    gp.x_title = 'Dates'
    gp.y_title = 'Pc'

    # plot using Bokeh then PyThalesians
    pf.plot_bar_graph(daily_vals * 100, adapter = 'bokeh', gp = gp)
    pf.plot_bar_graph(daily_vals * 100, adapter = 'pythalesians', gp = gp)

# plot daily changes in FX
if True:
    from datetime import timedelta
    ltsf = LightTimeSeriesFactory()

    end = datetime.datetime.utcnow()
Exemple #12
0
    def run_arbitrary_sensitivity(self, strat, parameter_list = None, parameter_names = None,
                                  pretty_portfolio_names = None, parameter_type = None):

        asset_df, spot_df, spot_df2, basket_dict = strat.fill_assets()

        port_list = None
        tsd_list = []

        for i in range(0, len(parameter_list)):
            br = strat.fill_backtest_request()

            current_parameter = parameter_list[i]

            # for calculating P&L
            for k in current_parameter.keys():
                setattr(br, k, current_parameter[k])

            strat.br = br   # for calculating signals

            signal_df = strat.construct_signal(spot_df, spot_df2, br.tech_params, br)

            cash_backtest = CashBacktest()
            self.logger.info("Calculating... " + str(pretty_portfolio_names[i]))

            cash_backtest.calculate_trading_PnL(br, asset_df, signal_df)
            tsd_list.append(cash_backtest.get_portfolio_pnl_tsd())
            stats = str(cash_backtest.get_portfolio_pnl_desc()[0])

            port = cash_backtest.get_cumportfolio().resample('B').mean()
            port.columns = [str(pretty_portfolio_names[i]) + ' ' + stats]

            if port_list is None:
                port_list = port
            else:
                port_list = port_list.join(port)

        # reset the parameters of the strategy
        strat.br = strat.fill_backtest_request()

        pf = PlotFactory()
        gp = GraphProperties()

        ir = [t.inforatio()[0] for t in tsd_list]

        # if we have too many combinations remove legend and use scaled shaded colour
        # if len(port_list) > 10:
            # gp.color = 'Blues'
            # gp.display_legend = False

        # plot all the variations
        gp.resample = 'B'
        gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + '.png'
        gp.html_file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + '.html'
        gp.scale_factor = self.SCALE_FACTOR
        gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type
        pf.plot_line_graph(port_list, adapter = self.DEFAULT_PLOT_ENGINE, gp = gp)

        # plot all the IR in a bar chart form (can be easier to read!)
        gp = GraphProperties()
        gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + ' IR.png'
        gp.html_file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + ' IR.html'
        gp.scale_factor = self.SCALE_FACTOR
        gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type
        summary = pandas.DataFrame(index = pretty_portfolio_names, data = ir, columns = ['IR'])
        pf.plot_bar_graph(summary, adapter = self.DEFAULT_PLOT_ENGINE, gp = gp)

        return port_list
    cash_backtest.calculate_trading_PnL(br, asset_df, signal_df)
    port = cash_backtest.get_cumportfolio()
    port.columns = [
        indicator + ' = ' + str(tech_params.sma_period) + ' ' +
        str(cash_backtest.get_portfolio_pnl_desc()[0])
    ]
    signals = cash_backtest.get_porfolio_signal()

    # print the last positions (we could also save as CSV etc.)
    print(signals.tail(1))

    pf = PlotFactory()
    gp = GraphProperties()
    gp.title = "Thalesians FX trend strategy"
    gp.source = 'Thalesians/BBG (calc with PyThalesians Python library)'
    gp.scale_factor = 1
    gp.file_output = 'output_data/fx-trend-example.png'

    pf.plot_line_graph(port, adapter='pythalesians', gp=gp)

###### backtest simple trend following strategy for FX spot basket
if True:
    # for backtest and loading data
    from pythalesians.market.requests.backtestrequest import BacktestRequest
    from pythalesians.backtest.cash.cashbacktest import CashBacktest
    from pythalesians.market.requests.timeseriesrequest import TimeSeriesRequest
    from pythalesians.market.loaders.lighttimeseriesfactory import LightTimeSeriesFactory
    from pythalesians.util.fxconv import FXConv
    from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs

    # for logging
    tech_ind.create_tech_ind(spot_df, indicator, tech_params); signal_df = tech_ind.get_signal()

    # use the same data for generating signals
    cash_backtest.calculate_trading_PnL(br, asset_df, signal_df)
    port = cash_backtest.get_cumportfolio()
    port.columns = [indicator + ' = ' + str(tech_params.sma_period) + ' ' + str(cash_backtest.get_portfolio_pnl_desc()[0])]
    signals = cash_backtest.get_porfolio_signal()

    # print the last positions (we could also save as CSV etc.)
    print(signals.tail(1))

    pf = PlotFactory()
    gp = GraphProperties()
    gp.title = "Thalesians FX trend strategy"
    gp.source = 'Thalesians/BBG (calc with PyThalesians Python library)'
    gp.scale_factor = 1
    gp.file_output = 'output_data/fx-trend-example.png'

    pf.plot_line_graph(port, adapter = 'pythalesians', gp = gp)

###### backtest simple trend following strategy for FX spot basket
if True:
    # for backtest and loading data
    from pythalesians.market.requests.backtestrequest import BacktestRequest
    from pythalesians.backtest.cash.cashbacktest import CashBacktest
    from pythalesians.market.requests.timeseriesrequest import TimeSeriesRequest
    from pythalesians.market.loaders.lighttimeseriesfactory import LightTimeSeriesFactory
    from pythalesians.util.fxconv import FXConv
    from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs

    # for logging