lr_scheduler.step(validation_logs['loss']) if epoch > 0: ckpter.last_delete_and_save(epoch=epoch, monitor='acc', loss_acc=validation_logs) ckpter_lr.last_delete_and_save(epoch=epoch, monitor='acc', loss_acc=validation_logs) ckpter_auc.last_delete_and_save(epoch=epoch, monitor='auc', loss_acc=validation_logs) ckpter_auc_lr.last_delete_and_save(epoch=epoch, monitor='auc', loss_acc=validation_logs) ckpter.check_on(epoch=epoch, monitor='acc', loss_acc=validation_logs) ckpter_lr.check_on(epoch=epoch, monitor='acc', loss_acc=validation_logs) ckpter_auc.check_on(epoch=epoch, monitor='auc', loss_acc=validation_logs) ckpter_auc_lr.check_on(epoch=epoch, monitor='auc', loss_acc=validation_logs) dill.dump(train_hist, file=open( ROOT_DIR + "/ckpt/" + exp_name + train_hist.name + ".pickle", "wb")) dill.dump(validation_hist, file=open(
train_hist.add(logs=train_logs, epoch=epoch + 1) epoch_time_end = time.time() # -------------------------------------------------------------------------------------- # Save last model parameters and check if it is the best # -------------------------------------------------------------------------------------- if epoch > 0: ckpter.last_delete_and_save(epoch=epoch, monitor='acc', loss_acc=validation_logs) ckpter_v2.last_delete_and_save(epoch=epoch, monitor='acc001', loss_acc=validation_logs) if num_triplets: ckpter.check_on(epoch=epoch, monitor='acc', loss_acc=validation_logs) ckpter_v2.check_on(epoch=epoch, monitor='acc001', loss_acc=validation_logs) print( 'Epoch {}:\tAverage Triplet Loss: {:.3f}\tEpoch Time: {:.3f} hours\tNumber of valid training triplets in epoch: {}' .format(epoch + 1, avg_triplet_loss, (epoch_time_end - epoch_time_start) / 3600, num_triplets)) dill.dump(train_hist, file=open( "ckpt/" + triplet_method + train_hist.name + ".pickle", "wb")) dill.dump(validation_hist, file=open( "ckpt/" + triplet_method + validation_hist.name +