Exemple #1
0
temperatures = np.linspace(0.1, 1000, 20)
for temperature in np.linspace(0.1, 1000, 20):
    #temperature = 1000
    lower = 0.
    upper = 10.
    mcmc_steps = 10000
    minimization_steps = 50
    burn_in_steps = minimization_steps
    particle_number = 10
    max_delta = 1.0
    cutoff = 0.98 * (upper - lower) / 2

    potential = LennardJonesOpt(sigma=1., epsilon=3.0, cutoff=cutoff)
    p_group = ParticleGroup.random_square(number=particle_number,
                                          lower=lower,
                                          upper=upper,
                                          dimension=2,
                                          kind='p',
                                          use_cpp=False)
    p_group.attach_pairwise_potential(potential)
    propagator = Propagator(
        p_group, termo_properties=['potential_energy', 'trajectory'])
    #####

    propagator.minimize(minimization_steps)
    propagator.propagate_mcmc_nvt_onep(steps=mcmc_steps,
                                       temperature=temperature,
                                       max_delta=max_delta)
    print(propagator.last_run_time)
    propagator.burn_in(burn_in_steps)
    #propagator.dump_to_xyz('test_lj.xyz')
    acceptances.append(propagator.get_acceptance_percentage())
from chem_mcmc import plotting
from chem_mcmc import constants
import time

# Simulation setup #
temperature = 10000
pressure = 2  # units should be kcal/(mol ang^2)
# an approximate idea given by the ideal gas law is that T*N * R * 4.184/upper^2
# \approx P
lower = 0.
upper = 12.
mcmc_steps = 50000
potential = HardSpheresStep(sigma1=0.5, sigma2=1.0, epsilon=2)
p_group = ParticleGroup.random_square(number=20,
                                      lower=lower,
                                      upper=upper,
                                      dimension=2,
                                      kind='p')
p_group.attach_pairwise_potential(potential)
propagator = Propagator(
    p_group,
    termo_properties=['potential_energy', 'trajectory', 'bound_sizes'])
propagator.minimize(50)
propagator.propagate_mcmc_npt(steps=mcmc_steps,
                              temperature=temperature,
                              pressure=pressure,
                              max_delta_coord=1.0)
propagator.burn_in(50)
propagator.dump_to_xyz('npt_low_fixed.xyz')
#bound_sizes = propagator.get_bound_sizes()
#np.set_printoptions(threshold=3000)
Exemple #3
0
import chem_mcmc
import numpy as np
import matplotlib.pyplot as plt
from chem_mcmc.staging import Propagator, ParticleGroup
from chem_mcmc.potentials import LogGaussianOpt
from chem_mcmc.utils import get_running_mean, get_running_std, PDensity
from chem_mcmc import potentials
from chem_mcmc import plotting
from chem_mcmc import constants
# EXAMPLE 1 do this once
temperature = 600
lower = 0.
upper = 12.
# ~ 80k is converged (10 s) , ~ 800k is very well converged
mcmc_steps = 80000
#potential = LogGaussian(A=[2., 0.8], mu=[4, 8])
potential = LogGaussianOpt(A=[2., 0.8], mu=[4, 8])
p_group = ParticleGroup.random_square(number=1,
                                      lower=lower,
                                      upper=upper,
                                      dimension=1,
                                      kind='r')
p_group.attach_external_potential(potential)
propagator = Propagator(p_group,
                        termo_properties=['potential_energy', 'trajectory'])
propagator.propagate_mcmc_nvt(steps=mcmc_steps,
                              temperature=temperature,
                              max_delta=1.0)
Exemple #4
0
def replica_remc(random_square_kwargs, propagate_mcmc_nvt_onep_kwargs,
                 potential, termo_properties, minimization_steps,
                 burn_in_steps, mcmc_steps, replica_idx, connections):
    p_group = ParticleGroup.random_square(**random_square_kwargs)
    p_group.attach_pairwise_potential(potential)
    propagator = Propagator(p_group, termo_properties=termo_properties)
    propagator.minimize(minimization_steps)

    iterations = mcmc_steps // propagate_mcmc_nvt_onep_kwargs['steps']
    replica_acceptance = 0
    for iteration_idx in range(iterations):
        propagator.propagate_mcmc_nvt_onep(**propagate_mcmc_nvt_onep_kwargs)
        # Only returns true if the parities are different, for even
        # iterations this has to be done by odd replicas
        # for odd iterations this has to be done by even replicas
        if iteration_idx % 2 != replica_idx % 2:
            # for even iterations I have to exchange 0-1 2-3 4-5 6-7 so the
            # processes in charge of the exchange will be 0 2 3 4 6 ... etc
            # This means I will only do the calculation if the process index is
            # even, but I first need to receive a value from the processes with
            # odd process index
            # odd indices send data to even indices
            right_energy = propagator.get_potential_energy()[-1]
            right_temperature = propagate_mcmc_nvt_onep_kwargs['temperature']
            connections['left'].send(
                (right_energy, right_temperature, replica_idx))
            # after doing this I try to receive some coordinates, if I receive
            # something then the exchange was successful! if I receive None then
            # the exchange was not successful
            left_particle_group = connections['left'].recv()
            if left_particle_group is not None:
                # if the exchange was successful I do this
                connections['left'].send(propagator.particle_group)
                propagator.particle_group = left_particle_group
                propagator.store_termo(temperature=right_temperature)
                replica_acceptance += 1
            else:
                # if the exchange was unsuccessful I store the same
                # conformation again and continue
                propagator.store_termo(temperature=right_temperature)
        # Only returns true if the parities are equal, for even
        # iterations this has to be done by even replicas
        # for odd iterations this has to be done by odd replicas
        # This is the code that actually manages the exchange calculations
        if iteration_idx % 2 == replica_idx % 2:
            # Here I receive data and calculate the mcmc exchange
            # probability
            left_energy = propagator.get_potential_energy()[-1]
            left_temperature = propagate_mcmc_nvt_onep_kwargs['temperature']
            left_beta = 1 / (constants.kb * left_temperature)

            # this blocks until there is something to receive
            right_energy, right_temperature, right_replica_idx = connections[
                'right'].recv()
            right_beta = 1 / (constants.kb * right_temperature)

            mc_factor = np.exp(
                (left_beta - right_beta) * (left_energy - right_energy))

            if propagator.prng.uniform(low=0., high=1.) < mc_factor:
                # first I send the particle group through the pipe
                connections['right'].send(propagator.particle_group)
                # afterwards I receive the particle right particle_group
                # from the pipe I change the coordinates of all the
                # particles to be those of the particle group and I store
                # the termo properties as if the temperature was the
                # temperature of this specific replica
                propagator.particle_group = connections['right'].recv()
                propagator.store_termo(temperature=left_temperature)
                replica_acceptance += 1
            else:
                # I just send an "exchange rejected signal" and store the
                # termo properties again
                connections['right'].send(None)
                propagator.store_termo(temperature=left_temperature)
    replica_acceptance_rate = replica_acceptance / iterations