Exemple #1
0
def rerun_dfa(chrom,xdata,mask,groups,names,DFs):
    """Run DFA in min app"""
    #extract vars from xdata
    slice = meancent(_slice(xdata,chrom))
    
    #split in to training and test
    tr_slice,cv_slice,ts_slice,tr_grp,cv_grp,ts_grp,tr_nm,cv_nm,ts_nm=_split(slice,groups,mask,names)
    
    #get indexes
    idx = scipy.arange(xdata.shape[0])[:,nA]
    tr_idx = scipy.take(idx,_index(mask,0),0)
    cv_idx = scipy.take(idx,_index(mask,1),0)
    ts_idx = scipy.take(idx,_index(mask,2),0)
    
    #model DFA on training samples
    u,v,eigs,dummy = cva(tr_slice,tr_grp,DFs)
    
    #project xval and test samples
    projUcv = scipy.dot(cv_slice,v)
    projUt = scipy.dot(ts_slice,v)
    
    uout = scipy.zeros((xdata.shape[0],DFs),'d')
    _put(uout,scipy.reshape(tr_idx,(len(tr_idx),)).tolist(),u)
    _put(uout,scipy.reshape(cv_idx,(len(cv_idx),)).tolist(),projUcv)
    _put(uout,scipy.reshape(ts_idx,(len(ts_idx),)).tolist(),projUt)
    
    return uout,v,eigs      
Exemple #2
0
def rerun_dfa(chrom, xdata, mask, groups, names, DFs):
    """Run DFA in min app"""
    #extract vars from xdata
    slice = meancent(_slice(xdata, chrom))

    #split in to training and test
    tr_slice, cv_slice, ts_slice, tr_grp, cv_grp, ts_grp, tr_nm, cv_nm, ts_nm = _split(
        slice, groups, mask, names)

    #get indexes
    idx = scipy.arange(xdata.shape[0])[:, nA]
    tr_idx = scipy.take(idx, _index(mask, 0), 0)
    cv_idx = scipy.take(idx, _index(mask, 1), 0)
    ts_idx = scipy.take(idx, _index(mask, 2), 0)

    #model DFA on training samples
    u, v, eigs, dummy = cva(tr_slice, tr_grp, DFs)

    #project xval and test samples
    projUcv = scipy.dot(cv_slice, v)
    projUt = scipy.dot(ts_slice, v)

    uout = scipy.zeros((xdata.shape[0], DFs), 'd')
    _put(uout, scipy.reshape(tr_idx, (len(tr_idx), )).tolist(), u)
    _put(uout, scipy.reshape(cv_idx, (len(cv_idx), )).tolist(), projUcv)
    _put(uout, scipy.reshape(ts_idx, (len(ts_idx), )).tolist(), projUt)

    return uout, v, eigs
Exemple #3
0
def call_dfa(chrom, xdata, DFs, mask, data):
    """Runs DFA on subset of variables from "xdata" as 
    defined by "chrom" and returns a vector of fitness 
    scores to be fed back into the GA
    """
    Y = []
    for x in range(len(chrom)):
        if _remdup(chrom[x]) == 0:
            #extract vars from xdata
            slice = meancent(_slice(xdata, chrom[x]))
            collate = 0
            for nF in range(mask.shape[1]):
                #split in to training and test
                tr_slice, cv_slice, ts_slice, tr_grp, cv_grp, ts_grp, tr_nm, cv_nm, ts_nm = _split(
                    slice, data['class'][:, 0], mask[:, nF].tolist(),
                    data['label'])

                try:
                    u, v, eigs, dummy = cva(tr_slice, tr_grp, DFs)
                    projU = scipy.dot(cv_slice, v)
                    u = scipy.concatenate((u, projU), 0)
                    group2 = scipy.concatenate((tr_grp, cv_grp), 0)

                    B, W = _BW(u, group2)
                    L, A = scipy.linalg.eig(B, W)
                    order = _flip(
                        scipy.argsort(scipy.reshape(L.real, (len(L), ))))
                    Ls = _flip(scipy.sort(L.real))
                    eigval = Ls[0:DFs]

                    collate += sum(eigval)
                except:
                    continue

            if collate != 0:
                Y.append(float(mask.shape[1]) / collate)
            else:
                Y.append(10.0**5)
        else:
            Y.append(10.0**5)

    return scipy.array(Y)[:, nA]
Exemple #4
0
def call_dfa(chrom,xdata,DFs,mask,data):
    """Runs DFA on subset of variables from "xdata" as 
    defined by "chrom" and returns a vector of fitness 
    scores to be fed back into the GA
    """
    Y = []
    for x in range(len(chrom)):
        if _remdup(chrom[x]) == 0:
            #extract vars from xdata
            slice = meancent(_slice(xdata,chrom[x]))
            collate = 0
            for nF in range(mask.shape[1]):
                #split in to training and test
                tr_slice,cv_slice,ts_slice,tr_grp,cv_grp,ts_grp,tr_nm,cv_nm,ts_nm=_split(slice,
                      data['class'][:,0],mask[:,nF].tolist(),data['label'])
                
                try:
                    u,v,eigs,dummy = cva(tr_slice,tr_grp,DFs)
                    projU = scipy.dot(cv_slice,v)
                    u = scipy.concatenate((u,projU),0)
                    group2 = scipy.concatenate((tr_grp,cv_grp),0)
            
                    B,W = _BW(u,group2)
                    L,A = scipy.linalg.eig(B,W)
                    order =  _flip(scipy.argsort(scipy.reshape(L.real,(len(L),))))
                    Ls =  _flip(scipy.sort(L.real))
                    eigval = Ls[0:DFs]
                    
                    collate += sum(eigval)
                except:
                    continue
                
            if collate != 0:
                Y.append(float(mask.shape[1])/collate)
            else:
                Y.append(10.0**5)
        else:
            Y.append(10.0**5)
            
    return scipy.array(Y)[:,nA]