class CherabMASTU(object):
    """
    demo class for modelling Cherab images of MAST-U
    """

    def __init__(self, solps_ref_no, view, line, camera, optics='MAST_CI_mod', cherab_down_sample=50, verbose=True,
                 display=False, overwrite=False):
        """
        :param solps_ref_no: int
        :param view: str
        :param line: str
        :param camera: str
        :param optics: str
        :param cherab_down_sample: int downsample the image by ths factor in both dimensions, for speed / testing.
        :param verbose: bool
        :param display: bool
        :param overwrite: bool
        """

        self.world = World()
        self.solps_ref_no = solps_ref_no
        self.line = line
        self.view = view
        self.camera = camera
        self.optics = optics
        self.cherab_down_sample = cherab_down_sample
        self.verbose = verbose
        self.display = display
        self.overwrite = overwrite

        self.radiance = NotImplemented
        self.spectral_radiance = NotImplemented

        self.pupil_point = settings.view[self.view]['pupil_point']
        self.view_vector = settings.view[self.view]['view_vector']
        self.sensor_format = settings.camera[self.camera]['sensor_format']
        for s in self.sensor_format:
            assert s % cherab_down_sample == 0
        self.sensor_format_ds = tuple((np.array(self.sensor_format) / cherab_down_sample).astype(np.int))
        self.pixel_size = settings.camera[self.camera]['pixel_size']
        self.pixel_size_ds = self.pixel_size * cherab_down_sample

        self.x, self.y, = self.calc_pixel_position(self.pixel_size, self.sensor_format)
        self.x_pixel = self.x.x_pixel
        self.y_pixel = self.y.y_pixel

        self.x_ds = self.x.isel(x=slice(0, self.sensor_format[0], cherab_down_sample, ))
        self.y_ds = self.y.isel(y=slice(0, self.sensor_format[1], cherab_down_sample, ))
        self.x_pixel_ds = self.x_ds.x_pixel
        self.y_pixel_ds = self.y_ds.y_pixel

        self.chunks = {'x': 800, 'y': 800}

        # calculate field of view (FOV) (horizontal) using sensor geometry and lens focal lengths
        f_1, f_2, f_3 = settings.optics[self.optics]
        sensor_dim = self.sensor_format[0] * self.pixel_size
        self.fov = 2 * np.arctan((sensor_dim / 2) * f_2 / (f_3 * f_1)) * 180 / np.pi  # deg
#
        # file and directory paths
        self.dir_name = str(solps_ref_no) + '_' + view + '_' + line + '_' + camera
        self.dir_path = os.path.join(path_saved_data, self.dir_name)
        fname = 'spec_power.nc'
        fname_ds = 'spec_power_ds.nc'
        self.fpath_ds = os.path.join(self.dir_path, fname_ds, )
        self.fpath = os.path.join(self.dir_path, fname, )

        # load SOLPS plasma and set emission line model
        self.sim = load_solps_from_mdsplus(mds_server, self.solps_ref_no)
        self.plasma = self.sim.create_plasma(parent=self.world)
        self.plasma.atomic_data = OpenADAS(permit_extrapolation=True)

        emission_line = settings.line[self.line]
        element, charge, transition = [emission_line[s] for s in ['element', 'charge', 'transition', ]]
        line_obj = Line(element, charge, transition, )
        self._line_excit = ExcitationLine(line_obj, lineshape=StarkBroadenedLine)
        self._line_recom = RecombinationLine(line_obj, lineshape=StarkBroadenedLine)
        self.plasma.models = [Bremsstrahlung(), self._line_excit, self._line_recom]
        wl_0_nm = self._line_excit.atomic_data.wavelength(element, charge, transition, )
        self.wl_0 = wl_0_nm * 1e-9  # [m]
        self.wl_min_nm, self.wl_max_nm = wl_0_nm - 0.2, wl_0_nm + 0.2  # [m]

        # ugly, but I want to convert the density units to 10^{20} m^{-3}
        def get_ne(x, y, z, ):
            return 1e-20 * self.plasma.electron_distribution.density(x, y, z, )

        def get_ni(x, y, z, ):
            return 1e-20 * self.plasma.composition.get(deuterium, 0).distribution.density(x, y, z, )

        def get_b_field_mag(x, y, z, ):
            """
            magnitude of the magnetic field at x, y, z
            :param x:
            :param y:
            :param z:
            :return:
            """
            return self.plasma.b_field(x, y, z, ).length

        def get_emiss_excit(x, y, z, ):
            return self._line_excit.emission(Point3D(x, y, z, ), Vector3D(1, 1, 1), Spectrum(380, 700, 100)).total()

        def get_emiss_recom(x, y, z, ):
            return self._line_recom.emission(Point3D(x, y, z, ), Vector3D(1, 1, 1), Spectrum(380, 700, 100)).total()

        self.valid_param_get_fns = {'ne': get_ne,
                                    'ni': get_ni,
                                    'te': self.plasma.electron_distribution.effective_temperature,
                                    'ti': self.plasma.composition.get(deuterium, 0).distribution.effective_temperature,
                                    'tn': self.plasma.composition.get(deuterium, 1).distribution.effective_temperature,
                                    'b_field_mag': get_b_field_mag,
                                    'emiss_excit': get_emiss_excit,
                                    'emiss_recom': get_emiss_recom,
                                    }
        self.valid_params = list(self.valid_param_get_fns.keys())

        # load / make the cherab image
        if os.path.isdir(self.dir_path) and self.overwrite is False:
            if os.path.isfile(self.fpath) and os.path.isfile(self.fpath_ds):
                pass
        else:
            if not os.path.isdir(self.dir_path):
                os.mkdir(self.dir_path)
                self.make_cherab_image()

        ds, ds_ds = self.load_cherab_image()
        self.spectral_radiance = ds['spectral_radiance']
        self.radiance = self.spectral_radiance.integrate(dim='wavelength')
        self.radiance = xr.where(xr.ufuncs.isnan(self.radiance), 0, self.radiance, )

        self.spectral_radiance_ds = ds_ds['spectral_radiance_ds']
        self.radiance_ds = ds_ds['radiance_ds']
        self.view_vectors = ds_ds['view_vectors_ds']
        self.ray_lengths = ds_ds['ray_lengths_ds']
        ds.close()

        # self.mask_ds = self.make_mask_ds()

    def load_cherab_image(self):
        ds = xr.open_dataset(self.fpath, chunks=self.chunks)
        ds_ds = xr.load_dataset(self.fpath_ds, )
        return ds, ds_ds,

    def make_cherab_image(self):
        """
        run cherab to generate the synthetic spectral cube
        :return:
        """
        if self.radiance is not NotImplemented:
            self.radiance.close()
        if self.spectral_radiance is not NotImplemented:
            self.spectral_radiance.close()

        import_mastu_mesh(self.world, )

        # first, define camera, calculate view vectors and calculate ray lengths
        pipeline_spectral = SpectralPowerPipeline2D()
        pipeline_spectral_rad = SpectralRadiancePipeline2D()
        pipelines = [pipeline_spectral, pipeline_spectral_rad, ]
        camera = PinholeCamera(self.sensor_format_ds, fov=self.fov, pipelines=pipelines, parent=self.world)

        # orient and position the camera
        init_view_vector, init_up_vector = Vector3D(0, 0, 1), Vector3D(0, 1, 0)
        axle_1 = init_view_vector.cross(self.view_vector)
        angle = init_view_vector.angle(self.view_vector)
        t_1 = rotate_vector(angle, axle_1)

        final_up_vector = rotate_vector(-90, axle_1) * self.view_vector
        intermediate_up_vector = t_1 * init_up_vector
        angle_between = intermediate_up_vector.angle(final_up_vector)
        t_2 = rotate_vector(-angle_between, self.view_vector)

        camera.transform = translate(self.pupil_point[0],
                                     self.pupil_point[1],
                                     self.pupil_point[2], ) * t_2 * t_1

        vector_xyz = np.arange(3)
        vector_xyz = xr.DataArray(vector_xyz, coords=(vector_xyz, ), dims=('vector_xyz',), name='vector_xyz', )

        # calculating the pixel view directions
        view_vectors = xr.combine_nested(
            [xr.zeros_like(self.x_pixel_ds + self.y_pixel_ds) + self.view_vector[i] for i in [0, 1, 2, ]],
            concat_dim=(vector_xyz,), )
        view_vectors = view_vectors.rename('view_vectors')

        def v3d2da(v3d):
            """
            raysect Vector3D to xarray DataArray

            :param v3d:
            :return:
            """
            da = np.array([v3d.x, v3d.y, v3d.z, ])
            da = xr.DataArray(da, coords=(np.arange(3),), dims=('vector_xyz',), )
            return da

        # basis unit vectors defining camera view -- v_z is forward and v_y is up
        v_y = final_up_vector.normalise()
        v_x = self.view_vector.cross(v_y).normalise()
        v_z = self.view_vector.normalise()
        v_x, v_y, v_z = [v3d2da(i) for i in [v_x, v_y, v_z, ]]

        # FOV defines the widest view, with pixels defined as square.
        sensor_aspect = self.sensor_format[1] / self.sensor_format[0]
        if sensor_aspect > 1:
            fov_v = self.fov
            fov_h = self.fov / sensor_aspect
        elif sensor_aspect == 1:
            fov_v = fov_h = self.fov
        elif sensor_aspect < 1:
            fov_h = self.fov
            fov_v = self.fov * sensor_aspect
        else:
            raise Exception()

        pixel_projection = 2 * np.tan(fov_h * np.pi / 360) / self.sensor_format[0]
        view_vectors = view_vectors + (v_x * (self.x_pixel_ds - self.sensor_format[0] / 2 + 0.5) * pixel_projection) + \
                       (v_y * (self.y_pixel_ds - self.sensor_format[1] / 2 + 0.5) * pixel_projection)

        if self.verbose:
            print('--status: calculating ray lengths')
        # TODO there has to be a better way of doing this?!
        ray_lengths = xr.DataArray(np.zeros(self.sensor_format_ds), dims=('x', 'y', ), coords=(self.x_ds, self.y_ds, ))
        for idx_x, x_pixel in enumerate(self.x_pixel_ds.values):
            if self.verbose and idx_x % 10 == 0:
                print('x =', str(x_pixel))
            for idx_y, y_pixel in enumerate(self.y_pixel_ds.values):
                direction = Vector3D(*list(view_vectors.isel(x=idx_x, y=idx_y, ).values))

                intersections = []
                for p in self.world.primitives:
                    intersection = p.hit(CoreRay(self.pupil_point, direction, ))
                    if intersection is not None:
                        intersections.append(intersection)

                # find the intersection corresponding to the shortest ray length
                no_intersections = len(intersections)
                if no_intersections == 0:
                    ray_lengths.values[idx_x, idx_y] = 3
                else:
                    ray_lengths.values[idx_x, idx_y] = min([i.ray_distance for i in intersections if i.primitive.name != 'Plasma Geometry'])

        camera.spectral_bins = 40
        camera.pixel_samples = 10
        camera.min_wavelength = self.wl_min_nm
        camera.max_wavelength = self.wl_max_nm
        camera.quiet = not self.verbose
        camera.observe()

        # output to netCDF via xarray
        wl = pipeline_spectral.wavelengths
        wl = xr.DataArray(wl, coords=(wl, ), dims=('wavelength', )) * 1e-9  # ( m )
        spec_power_ds = pipeline_spectral.frame.mean * 1e9  # converting units from (W/nm) --> (W/m)
        spec_radiance_ds = pipeline_spectral_rad.frame.mean * 1e9
        coords = (self.x_ds, self.y_ds, wl, )
        dims = ('x', 'y', 'wavelength', )
        name = 'spec_power'
        attrs = {'units': 'W/m^2/str/m'}
        spec_power_ds = xr.DataArray(np.flip(spec_power_ds, axis=1), coords=coords, dims=dims, name=name, attrs=attrs, )
        spec_radiance_ds = xr.DataArray(np.flip(spec_radiance_ds, axis=1, ), coords=coords, dims=dims, name=name, attrs=attrs, )

        # calculate the centre-of-mass wavelength
        radiance_ds = spec_power_ds.integrate(dim='wavelength').assign_attrs({'units': 'W/m^2/str', })

        ds_ds = xr.Dataset({'spectral_radiance_ds': spec_radiance_ds,
                            'radiance_ds': radiance_ds,
                            'view_vectors_ds': view_vectors,
                            'ray_lengths_ds': ray_lengths
                            })

        x_p_y = self.x + self.y
        spec_power = spec_power_ds.interp_like(x_p_y) / self.cherab_down_sample  # to conserve power
        ds = xr.Dataset({'spectral_radiance': spec_power, })
        ds_ds.to_netcdf(self.fpath_ds, mode='w', )
        ds.to_netcdf(self.fpath, mode='w', )

    def plot_line_of_sight(self, x_pixel, y_pixel, ax, **kwargs):
        """

        :param x_pixel:
        :param y_pixel:
        :param ax:
        :return:
        """

        direction = Vector3D(*list(self.view_vectors.isel(x=x_pixel, y=y_pixel, ).values)).normalise()
        ray_length = float(self.ray_lengths.isel(x=x_pixel, y=y_pixel, ).values)

        n_steps = 50
        increment = (ray_length / n_steps) * direction
        rs, zs = np.zeros(n_steps), np.zeros(n_steps)
        point_i = self.pupil_point  # initialise at pupil
        for i in range(n_steps):
            point_i += increment
            rs[i], zs[i], _ = cart2cyl(*[point_i[j] for j in range(3)])
        ax.plot(rs, zs, **kwargs)

    def calc_pixel_position(self, pixel_size, sensor_format, ):
        """
        Calculate pixel positions (in m) on the camera's sensor plane (the x-y plane).

        The origin of the x-y coordinate system is the centre of the sensor. Pixel positions correspond to the pixel
        centres. If x_pixel and y_pixel are specified then only returns the position of that pixel.

        :param float pixel_size: in m
        :param tuple sensor_format: (num_pix_x, num_pix_y)
        :return:
        """

        centre_pos = pixel_size * np.array(sensor_format) / 2
        x = (np.arange(sensor_format[0]) + 0.5) * pixel_size - centre_pos[0]
        y = (np.arange(sensor_format[1]) + 0.5) * pixel_size - centre_pos[1]
        x = xr.DataArray(x, dims=('x',), coords=(x,), )
        y = xr.DataArray(y, dims=('y',), coords=(y,), )

        x_pixel_coord = xr.DataArray(np.arange(sensor_format[0], ), dims=('x',), coords=(x,), )
        y_pixel_coord = xr.DataArray(np.arange(sensor_format[1], ), dims=('y',), coords=(y,), )
        x = x.assign_coords({'x_pixel': ('x', x_pixel_coord), }, )
        y = y.assign_coords({'y_pixel': ('y', y_pixel_coord), }, )

        return x, y
Exemple #2
0
    # Get new sample point location and log distance
    x = start_point.x + parametric_vector.x * t
    y = start_point.y + parametric_vector.y * t
    z = start_point.z + parametric_vector.z * t
    sample_point = Point3D(x, y, z)
    ray_r_points.append(np.sqrt(x**2 + y**2))
    ray_z_points.append(z)
    distance.append(start_point.distance_to(sample_point))

    # Sample plasma conditions
    te.append(electrons.effective_temperature(x, y, z))
    ne.append(electrons.density(x, y, z))

    Spectrum(350, 700, 8000)
    # Log magnitude of emission
    dalpha[i] = d_alpha_excit.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() + \
                d_alpha_recom.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total()
    dgamma[i] = d_gamma_excit.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() + \
                d_gamma_recom.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total()
    dbeta[i] = d_beta_excit.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() + \
               d_beta_recom.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total()
    ddelta[i] = d_delta_excit.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() + \
                d_delta_recom.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total()
    depsilon[i] = d_epsilon_excit.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() + \
                  d_epsilon_recom.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total()


# Normalise the emission arrays
dalpha /= dalpha.sum()
dgamma /= dgamma.sum()
dbeta /= dbeta.sum()
Exemple #3
0
r, _, z, t_samples = sample3d(d0_density, (0, 4, 200), (0, 0, 1), (-2, 2, 200))
plt.imshow(np.transpose(np.squeeze(t_samples)), extent=[0, 4, -2, 2])
plt.colorbar()
plt.axis('equal')
plt.xlabel('r axis')
plt.ylabel('z axis')
plt.title("Neutral Density profile in r-z plane")

plt.figure()
xrange = np.linspace(0, 4, 200)
yrange = np.linspace(-2, 2, 200)
d_alpha_rz_intensity = np.zeros((200, 200))
direction = Vector3D(0, 1, 0)
for i, x in enumerate(xrange):
    for j, y in enumerate(yrange):
        emission = d_alpha_excit.emission(Point3D(x, 0.0, y), direction, Spectrum(650, 660, 1))
        d_alpha_rz_intensity[j, i] = emission.total()
plt.imshow(d_alpha_rz_intensity, extent=[0, 4, -2, 2], origin='lower')
plt.colorbar()
plt.xlabel('r axis')
plt.ylabel('z axis')
plt.title("D-alpha emission in R-Z")


camera = PinholeCamera((256, 256), pipelines=[PowerPipeline2D()], parent=world)
camera.transform = translate(2.5, -4.5, 0)*rotate_basis(Vector3D(0, 1, 0), Vector3D(0, 0, 1))
camera.pixel_samples = 1

plt.ion()
camera.observe()
plt.ioff()