class CherabMASTU(object): """ demo class for modelling Cherab images of MAST-U """ def __init__(self, solps_ref_no, view, line, camera, optics='MAST_CI_mod', cherab_down_sample=50, verbose=True, display=False, overwrite=False): """ :param solps_ref_no: int :param view: str :param line: str :param camera: str :param optics: str :param cherab_down_sample: int downsample the image by ths factor in both dimensions, for speed / testing. :param verbose: bool :param display: bool :param overwrite: bool """ self.world = World() self.solps_ref_no = solps_ref_no self.line = line self.view = view self.camera = camera self.optics = optics self.cherab_down_sample = cherab_down_sample self.verbose = verbose self.display = display self.overwrite = overwrite self.radiance = NotImplemented self.spectral_radiance = NotImplemented self.pupil_point = settings.view[self.view]['pupil_point'] self.view_vector = settings.view[self.view]['view_vector'] self.sensor_format = settings.camera[self.camera]['sensor_format'] for s in self.sensor_format: assert s % cherab_down_sample == 0 self.sensor_format_ds = tuple((np.array(self.sensor_format) / cherab_down_sample).astype(np.int)) self.pixel_size = settings.camera[self.camera]['pixel_size'] self.pixel_size_ds = self.pixel_size * cherab_down_sample self.x, self.y, = self.calc_pixel_position(self.pixel_size, self.sensor_format) self.x_pixel = self.x.x_pixel self.y_pixel = self.y.y_pixel self.x_ds = self.x.isel(x=slice(0, self.sensor_format[0], cherab_down_sample, )) self.y_ds = self.y.isel(y=slice(0, self.sensor_format[1], cherab_down_sample, )) self.x_pixel_ds = self.x_ds.x_pixel self.y_pixel_ds = self.y_ds.y_pixel self.chunks = {'x': 800, 'y': 800} # calculate field of view (FOV) (horizontal) using sensor geometry and lens focal lengths f_1, f_2, f_3 = settings.optics[self.optics] sensor_dim = self.sensor_format[0] * self.pixel_size self.fov = 2 * np.arctan((sensor_dim / 2) * f_2 / (f_3 * f_1)) * 180 / np.pi # deg # # file and directory paths self.dir_name = str(solps_ref_no) + '_' + view + '_' + line + '_' + camera self.dir_path = os.path.join(path_saved_data, self.dir_name) fname = 'spec_power.nc' fname_ds = 'spec_power_ds.nc' self.fpath_ds = os.path.join(self.dir_path, fname_ds, ) self.fpath = os.path.join(self.dir_path, fname, ) # load SOLPS plasma and set emission line model self.sim = load_solps_from_mdsplus(mds_server, self.solps_ref_no) self.plasma = self.sim.create_plasma(parent=self.world) self.plasma.atomic_data = OpenADAS(permit_extrapolation=True) emission_line = settings.line[self.line] element, charge, transition = [emission_line[s] for s in ['element', 'charge', 'transition', ]] line_obj = Line(element, charge, transition, ) self._line_excit = ExcitationLine(line_obj, lineshape=StarkBroadenedLine) self._line_recom = RecombinationLine(line_obj, lineshape=StarkBroadenedLine) self.plasma.models = [Bremsstrahlung(), self._line_excit, self._line_recom] wl_0_nm = self._line_excit.atomic_data.wavelength(element, charge, transition, ) self.wl_0 = wl_0_nm * 1e-9 # [m] self.wl_min_nm, self.wl_max_nm = wl_0_nm - 0.2, wl_0_nm + 0.2 # [m] # ugly, but I want to convert the density units to 10^{20} m^{-3} def get_ne(x, y, z, ): return 1e-20 * self.plasma.electron_distribution.density(x, y, z, ) def get_ni(x, y, z, ): return 1e-20 * self.plasma.composition.get(deuterium, 0).distribution.density(x, y, z, ) def get_b_field_mag(x, y, z, ): """ magnitude of the magnetic field at x, y, z :param x: :param y: :param z: :return: """ return self.plasma.b_field(x, y, z, ).length def get_emiss_excit(x, y, z, ): return self._line_excit.emission(Point3D(x, y, z, ), Vector3D(1, 1, 1), Spectrum(380, 700, 100)).total() def get_emiss_recom(x, y, z, ): return self._line_recom.emission(Point3D(x, y, z, ), Vector3D(1, 1, 1), Spectrum(380, 700, 100)).total() self.valid_param_get_fns = {'ne': get_ne, 'ni': get_ni, 'te': self.plasma.electron_distribution.effective_temperature, 'ti': self.plasma.composition.get(deuterium, 0).distribution.effective_temperature, 'tn': self.plasma.composition.get(deuterium, 1).distribution.effective_temperature, 'b_field_mag': get_b_field_mag, 'emiss_excit': get_emiss_excit, 'emiss_recom': get_emiss_recom, } self.valid_params = list(self.valid_param_get_fns.keys()) # load / make the cherab image if os.path.isdir(self.dir_path) and self.overwrite is False: if os.path.isfile(self.fpath) and os.path.isfile(self.fpath_ds): pass else: if not os.path.isdir(self.dir_path): os.mkdir(self.dir_path) self.make_cherab_image() ds, ds_ds = self.load_cherab_image() self.spectral_radiance = ds['spectral_radiance'] self.radiance = self.spectral_radiance.integrate(dim='wavelength') self.radiance = xr.where(xr.ufuncs.isnan(self.radiance), 0, self.radiance, ) self.spectral_radiance_ds = ds_ds['spectral_radiance_ds'] self.radiance_ds = ds_ds['radiance_ds'] self.view_vectors = ds_ds['view_vectors_ds'] self.ray_lengths = ds_ds['ray_lengths_ds'] ds.close() # self.mask_ds = self.make_mask_ds() def load_cherab_image(self): ds = xr.open_dataset(self.fpath, chunks=self.chunks) ds_ds = xr.load_dataset(self.fpath_ds, ) return ds, ds_ds, def make_cherab_image(self): """ run cherab to generate the synthetic spectral cube :return: """ if self.radiance is not NotImplemented: self.radiance.close() if self.spectral_radiance is not NotImplemented: self.spectral_radiance.close() import_mastu_mesh(self.world, ) # first, define camera, calculate view vectors and calculate ray lengths pipeline_spectral = SpectralPowerPipeline2D() pipeline_spectral_rad = SpectralRadiancePipeline2D() pipelines = [pipeline_spectral, pipeline_spectral_rad, ] camera = PinholeCamera(self.sensor_format_ds, fov=self.fov, pipelines=pipelines, parent=self.world) # orient and position the camera init_view_vector, init_up_vector = Vector3D(0, 0, 1), Vector3D(0, 1, 0) axle_1 = init_view_vector.cross(self.view_vector) angle = init_view_vector.angle(self.view_vector) t_1 = rotate_vector(angle, axle_1) final_up_vector = rotate_vector(-90, axle_1) * self.view_vector intermediate_up_vector = t_1 * init_up_vector angle_between = intermediate_up_vector.angle(final_up_vector) t_2 = rotate_vector(-angle_between, self.view_vector) camera.transform = translate(self.pupil_point[0], self.pupil_point[1], self.pupil_point[2], ) * t_2 * t_1 vector_xyz = np.arange(3) vector_xyz = xr.DataArray(vector_xyz, coords=(vector_xyz, ), dims=('vector_xyz',), name='vector_xyz', ) # calculating the pixel view directions view_vectors = xr.combine_nested( [xr.zeros_like(self.x_pixel_ds + self.y_pixel_ds) + self.view_vector[i] for i in [0, 1, 2, ]], concat_dim=(vector_xyz,), ) view_vectors = view_vectors.rename('view_vectors') def v3d2da(v3d): """ raysect Vector3D to xarray DataArray :param v3d: :return: """ da = np.array([v3d.x, v3d.y, v3d.z, ]) da = xr.DataArray(da, coords=(np.arange(3),), dims=('vector_xyz',), ) return da # basis unit vectors defining camera view -- v_z is forward and v_y is up v_y = final_up_vector.normalise() v_x = self.view_vector.cross(v_y).normalise() v_z = self.view_vector.normalise() v_x, v_y, v_z = [v3d2da(i) for i in [v_x, v_y, v_z, ]] # FOV defines the widest view, with pixels defined as square. sensor_aspect = self.sensor_format[1] / self.sensor_format[0] if sensor_aspect > 1: fov_v = self.fov fov_h = self.fov / sensor_aspect elif sensor_aspect == 1: fov_v = fov_h = self.fov elif sensor_aspect < 1: fov_h = self.fov fov_v = self.fov * sensor_aspect else: raise Exception() pixel_projection = 2 * np.tan(fov_h * np.pi / 360) / self.sensor_format[0] view_vectors = view_vectors + (v_x * (self.x_pixel_ds - self.sensor_format[0] / 2 + 0.5) * pixel_projection) + \ (v_y * (self.y_pixel_ds - self.sensor_format[1] / 2 + 0.5) * pixel_projection) if self.verbose: print('--status: calculating ray lengths') # TODO there has to be a better way of doing this?! ray_lengths = xr.DataArray(np.zeros(self.sensor_format_ds), dims=('x', 'y', ), coords=(self.x_ds, self.y_ds, )) for idx_x, x_pixel in enumerate(self.x_pixel_ds.values): if self.verbose and idx_x % 10 == 0: print('x =', str(x_pixel)) for idx_y, y_pixel in enumerate(self.y_pixel_ds.values): direction = Vector3D(*list(view_vectors.isel(x=idx_x, y=idx_y, ).values)) intersections = [] for p in self.world.primitives: intersection = p.hit(CoreRay(self.pupil_point, direction, )) if intersection is not None: intersections.append(intersection) # find the intersection corresponding to the shortest ray length no_intersections = len(intersections) if no_intersections == 0: ray_lengths.values[idx_x, idx_y] = 3 else: ray_lengths.values[idx_x, idx_y] = min([i.ray_distance for i in intersections if i.primitive.name != 'Plasma Geometry']) camera.spectral_bins = 40 camera.pixel_samples = 10 camera.min_wavelength = self.wl_min_nm camera.max_wavelength = self.wl_max_nm camera.quiet = not self.verbose camera.observe() # output to netCDF via xarray wl = pipeline_spectral.wavelengths wl = xr.DataArray(wl, coords=(wl, ), dims=('wavelength', )) * 1e-9 # ( m ) spec_power_ds = pipeline_spectral.frame.mean * 1e9 # converting units from (W/nm) --> (W/m) spec_radiance_ds = pipeline_spectral_rad.frame.mean * 1e9 coords = (self.x_ds, self.y_ds, wl, ) dims = ('x', 'y', 'wavelength', ) name = 'spec_power' attrs = {'units': 'W/m^2/str/m'} spec_power_ds = xr.DataArray(np.flip(spec_power_ds, axis=1), coords=coords, dims=dims, name=name, attrs=attrs, ) spec_radiance_ds = xr.DataArray(np.flip(spec_radiance_ds, axis=1, ), coords=coords, dims=dims, name=name, attrs=attrs, ) # calculate the centre-of-mass wavelength radiance_ds = spec_power_ds.integrate(dim='wavelength').assign_attrs({'units': 'W/m^2/str', }) ds_ds = xr.Dataset({'spectral_radiance_ds': spec_radiance_ds, 'radiance_ds': radiance_ds, 'view_vectors_ds': view_vectors, 'ray_lengths_ds': ray_lengths }) x_p_y = self.x + self.y spec_power = spec_power_ds.interp_like(x_p_y) / self.cherab_down_sample # to conserve power ds = xr.Dataset({'spectral_radiance': spec_power, }) ds_ds.to_netcdf(self.fpath_ds, mode='w', ) ds.to_netcdf(self.fpath, mode='w', ) def plot_line_of_sight(self, x_pixel, y_pixel, ax, **kwargs): """ :param x_pixel: :param y_pixel: :param ax: :return: """ direction = Vector3D(*list(self.view_vectors.isel(x=x_pixel, y=y_pixel, ).values)).normalise() ray_length = float(self.ray_lengths.isel(x=x_pixel, y=y_pixel, ).values) n_steps = 50 increment = (ray_length / n_steps) * direction rs, zs = np.zeros(n_steps), np.zeros(n_steps) point_i = self.pupil_point # initialise at pupil for i in range(n_steps): point_i += increment rs[i], zs[i], _ = cart2cyl(*[point_i[j] for j in range(3)]) ax.plot(rs, zs, **kwargs) def calc_pixel_position(self, pixel_size, sensor_format, ): """ Calculate pixel positions (in m) on the camera's sensor plane (the x-y plane). The origin of the x-y coordinate system is the centre of the sensor. Pixel positions correspond to the pixel centres. If x_pixel and y_pixel are specified then only returns the position of that pixel. :param float pixel_size: in m :param tuple sensor_format: (num_pix_x, num_pix_y) :return: """ centre_pos = pixel_size * np.array(sensor_format) / 2 x = (np.arange(sensor_format[0]) + 0.5) * pixel_size - centre_pos[0] y = (np.arange(sensor_format[1]) + 0.5) * pixel_size - centre_pos[1] x = xr.DataArray(x, dims=('x',), coords=(x,), ) y = xr.DataArray(y, dims=('y',), coords=(y,), ) x_pixel_coord = xr.DataArray(np.arange(sensor_format[0], ), dims=('x',), coords=(x,), ) y_pixel_coord = xr.DataArray(np.arange(sensor_format[1], ), dims=('y',), coords=(y,), ) x = x.assign_coords({'x_pixel': ('x', x_pixel_coord), }, ) y = y.assign_coords({'y_pixel': ('y', y_pixel_coord), }, ) return x, y
# Get new sample point location and log distance x = start_point.x + parametric_vector.x * t y = start_point.y + parametric_vector.y * t z = start_point.z + parametric_vector.z * t sample_point = Point3D(x, y, z) ray_r_points.append(np.sqrt(x**2 + y**2)) ray_z_points.append(z) distance.append(start_point.distance_to(sample_point)) # Sample plasma conditions te.append(electrons.effective_temperature(x, y, z)) ne.append(electrons.density(x, y, z)) Spectrum(350, 700, 8000) # Log magnitude of emission dalpha[i] = d_alpha_excit.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() + \ d_alpha_recom.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() dgamma[i] = d_gamma_excit.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() + \ d_gamma_recom.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() dbeta[i] = d_beta_excit.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() + \ d_beta_recom.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() ddelta[i] = d_delta_excit.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() + \ d_delta_recom.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() depsilon[i] = d_epsilon_excit.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() + \ d_epsilon_recom.emission(sample_point, forward_vector, Spectrum(350, 700, 8000)).total() # Normalise the emission arrays dalpha /= dalpha.sum() dgamma /= dgamma.sum() dbeta /= dbeta.sum()
r, _, z, t_samples = sample3d(d0_density, (0, 4, 200), (0, 0, 1), (-2, 2, 200)) plt.imshow(np.transpose(np.squeeze(t_samples)), extent=[0, 4, -2, 2]) plt.colorbar() plt.axis('equal') plt.xlabel('r axis') plt.ylabel('z axis') plt.title("Neutral Density profile in r-z plane") plt.figure() xrange = np.linspace(0, 4, 200) yrange = np.linspace(-2, 2, 200) d_alpha_rz_intensity = np.zeros((200, 200)) direction = Vector3D(0, 1, 0) for i, x in enumerate(xrange): for j, y in enumerate(yrange): emission = d_alpha_excit.emission(Point3D(x, 0.0, y), direction, Spectrum(650, 660, 1)) d_alpha_rz_intensity[j, i] = emission.total() plt.imshow(d_alpha_rz_intensity, extent=[0, 4, -2, 2], origin='lower') plt.colorbar() plt.xlabel('r axis') plt.ylabel('z axis') plt.title("D-alpha emission in R-Z") camera = PinholeCamera((256, 256), pipelines=[PowerPipeline2D()], parent=world) camera.transform = translate(2.5, -4.5, 0)*rotate_basis(Vector3D(0, 1, 0), Vector3D(0, 0, 1)) camera.pixel_samples = 1 plt.ion() camera.observe() plt.ioff()