def test_randomforest_classify(self):
        task_config = dict(config.CLASSIFY_TASK_CONFIG)
        dir_name = os.path.dirname(os.path.abspath(__file__))
        task_config[
            "embedding_path"] = dir_name + "/../data/test_embedding/vec.txt"
        task_config["embedding_type"] = "w2v"
        cfg = AnnotatorConfig(task_config)
        train_data = TrainingData(
            [self.neg_msg1, self.neg_msg2, self.pos_msg1, self.pos_msg2])
        cb = ComponentBuilder()
        char_tokenize = cb.create_component("char_tokenizer", cfg)
        sent_embedding = cb.create_component("sentence_embedding_extractor",
                                             cfg)
        RandomForest_Classifier = cb.create_component(
            "RandomForest_Classifier", cfg)
        char_tokenize.train(train_data, cfg)
        sent_embedding.train(train_data, cfg)
        RandomForest_Classifier.train(train_data, cfg)
        # test
        test_msg = Message(u"增加一个需要上传的文件")
        char_tokenize.process(test_msg, **{})
        sent_embedding.process(test_msg, **{})
        RandomForest_Classifier.process(test_msg, **{})

        assert test_msg.get("classifylabel").get("name") == "bad"
Exemple #2
0
    def test_kmeans(self):
        from chi_annotator.algo_factory.components import ComponentBuilder
        from chi_annotator.algo_factory.common import Message
        from chi_annotator.task_center.config import AnnotatorConfig
        from chi_annotator.algo_factory.common import TrainingData
        cfg = AnnotatorConfig()
        pos_msg1 = Message(u"你好,我是一个demo!!!!")
        pos_msg2 = Message(u"你好,你好,你好")
        neg_msg1 = Message(u"如果发现有文件漏提或注释有误")
        neg_msg2 = Message(u"增加一个需要上传的文件")

        train_data = TrainingData([neg_msg1, neg_msg2, pos_msg1, pos_msg2])
        cb = ComponentBuilder()
        char_tokenize = cb.create_component("char_tokenizer", cfg)
        sent_embedding = cb.create_component("sentence_embedding_extractor",
                                             cfg)
        svm_classifer = cb.create_component("cluster_sklearn", cfg)
        char_tokenize.train(train_data, cfg)
        sent_embedding.train(train_data, cfg)
        svm_classifer.train(train_data, cfg)
        # test
        test_msg = Message(u"增加一个需要上传的文件")
        char_tokenize.process(test_msg, **{})
        sent_embedding.process(test_msg, **{})
        svm_classifer.process(test_msg, **{})
        assert test_msg.get("cluster_center").get("center") is not None
Exemple #3
0
    def ignore_test_train_with_empty_data(self):
        """
        test train with empty train data
        :return:
        """
        test_config = "tests/data/test_config/test_config.json"
        config = AnnotatorConfig(test_config)

        trainer = Trainer(config)
        assert len(trainer.pipeline) > 0
        # create tmp train set

        train_data = TrainingData([])
        # rm tmp train set

        trainer.train(train_data)
        # test persist and load
        persisted_path = trainer.persist(config['path'], config['project'],
                                         config['fixed_model_name'])

        interpreter_loaded = Interpreter.load(persisted_path, config)

        assert interpreter_loaded.pipeline
        assert interpreter_loaded.parse("hello") is not None
        assert interpreter_loaded.parse(
            "Hello today is Monday, again!") is not None

        # remove tmp models
        shutil.rmtree(config['path'], ignore_errors=False)
    def test_kmeans(self):
        from chi_annotator.algo_factory.components import ComponentBuilder
        from chi_annotator.algo_factory.common import Message
        from chi_annotator.task_center.config import AnnotatorConfig
        from chi_annotator.algo_factory.common import TrainingData
        task_config = dict(config.CLASSIFY_TASK_CONFIG)
        dir_name = os.path.dirname(os.path.abspath(__file__))
        task_config[
            "embedding_path"] = dir_name + "/../data/test_embedding/vec.txt"
        task_config["embedding_type"] = "w2v"
        cfg = AnnotatorConfig(task_config)
        pos_msg1 = Message(u"你好,我是一个demo!!!!")
        pos_msg2 = Message(u"你好,你好,你好")
        neg_msg1 = Message(u"如果发现有文件漏提或注释有误")
        neg_msg2 = Message(u"增加一个需要上传的文件")

        train_data = TrainingData([neg_msg1, neg_msg2, pos_msg1, pos_msg2])
        cb = ComponentBuilder()
        char_tokenize = cb.create_component("char_tokenizer", cfg)
        sent_embedding = cb.create_component("sentence_embedding_extractor",
                                             cfg)
        svm_classifer = cb.create_component("cluster_sklearn", cfg)
        char_tokenize.train(train_data, cfg)
        sent_embedding.train(train_data, cfg)
        svm_classifer.train(train_data, cfg)
        # test
        test_msg = Message(u"增加一个需要上传的文件")
        char_tokenize.process(test_msg, **{})
        sent_embedding.process(test_msg, **{})
        svm_classifer.process(test_msg, **{})
        assert test_msg.get("cluster_center").get("center") is not None
    def test_online_training(self):
        """
        test online training.
        :return:
        """
        test_config = "tests/data/test_config.json"
        config = AnnotatorConfig(test_config)
        # init trainer first
        trainer = Trainer(config)

        # load all data for test, in actual data should get from user label
        with io.open(config["org_data"], encoding="utf-8-sig") as f:
            data = simplejson.loads(f.read())
        validate_local_data(data)

        data_set = data.get("data_set", list())

        # faker user labeled data, user has labeled 50 texts.
        faker_user_labeled_data = data_set[:50]
        # 950 text to predict and rank
        unlabeled_data = data_set[50:]

        # now test online training
        examples = []
        for e in faker_user_labeled_data:
            data = e.copy()
            if "text" in data:
                del data["text"]
            examples.append(Message(e["text"], data))

        new_labeled_data = TrainingData(examples)

        # full amount train and persist model
        interpreter = trainer.train(new_labeled_data)
        trainer.persist(config['path'], config['project'],
                        config['fixed_model_name'])

        # predict unlabeled dataset and ranking
        predicted_results = []
        for unlabeled_data in unlabeled_data:
            predict = interpreter.parse(unlabeled_data["text"])
            predicted_results.append(predict)

        # sort predict result
        # predicted result format as
        # {
        #   'classifylabel': {'name': 'spam', 'confidence': 0.5701943777626447},
        #   'classifylabel_ranking': [{'name': 'spam', 'confidence': 0.5701943777626447},
        #                             {'name': 'notspam', 'confidence': 0.42980562223735524}],
        #   'text': '我是一个垃圾邮件'
        # }
        confidence_threshold = config["confidence_threshold"]
        ranking_candidates = [text for text in predicted_results \
                              if text.get("classifylabel").get("confidence") < confidence_threshold]
        for candidate in ranking_candidates:
            assert candidate.get("classifylabel").get(
                "confidence") < confidence_threshold
 def __init__(self, config):
     """
     init of ActiveLearner
     """
     self.config = config
     self.trainer = Trainer(config)
     self.train_data = TrainingData([])
     self.new_data_count = 0
     self.batch_num = config.get("batch_num", 20)
     self.db = DBManager(config)
     self.interpreter = None
Exemple #7
0
 def _train_batch(self, batch_result):
     # from result to train_data, create train data
     msg = []
     for item in batch_result:
         msg.append(Message(item["text"], {"label": item["label"]}))
     train_data = TrainingData(msg)
     # create interpreter
     trainer = Trainer(self.task_config)
     trainer.train(train_data)
     # save model meta for config
     trainer.persist(self.task_config.get_save_path_prefix())
     return True
    def ignor_test_embedding(self):
        from chi_annotator.algo_factory.components import ComponentBuilder
        from chi_annotator.algo_factory.common import Message
        from chi_annotator.task_center.config import AnnotatorConfig
        from chi_annotator.algo_factory.common import TrainingData
        from gensim.models.word2vec import LineSentence
        text_dir = create_tmp_test_textfile("spam_email_text_1000")

        # 将数据放入TrainingData
        with open(text_dir, 'r') as f:
            res = []
            for line in f.readlines():
                line.strip('\n')
                line = Message(re.sub('\s', '', line))
                res.append(line)
        res = TrainingData(res)

        cfg = AnnotatorConfig(
            filename="tests/data/test_config/test_config_embedding.json")
        cb = ComponentBuilder()

        # char_tokenize, embedding的训练暂时不用用到
        char_tokenize = cb.create_component("char_tokenizer", cfg)
        char_tokenize.train(res, cfg)

        # 加载embedding, 训练模型, 传入数据为LinSentence(data_path)
        embedding = cb.create_component("embedding", cfg)
        embedding.train(LineSentence(text_dir), cfg)
        embedding.persist(cfg.wv_model_path)

        # 加载sent_embedding, 从embedding训练完是model中, 获得sentence_vec
        sent_embedding = cb.create_component("embedding_extractor", cfg)
        msg = Message("你好,我是一个demo!!!!")
        char_tokenize.process(msg)
        sent_embedding.sentence_process(msg, **{})
        assert msg.get("sentence_embedding").sum() != 0

        # 加载base model, 加入新的corpus, 在base_model的基础上进行增量学习
        embedding = embedding.load(model_metadata=cfg)
        embedding.train(LineSentence(text_dir), cfg)
        embedding.persist(cfg.wv_model_path)

        # 增量学习后生成的新model, 进行EmbeddingExtractor测验
        sent_embedding = cb.create_component("embedding_extractor", cfg)
        msg = Message("你好,我是一个demo!!!!")
        char_tokenize.process(msg)
        sent_embedding.sentence_process(msg, **{})
        assert msg.get("sentence_embedding").sum() != 0

        rm_tmp_file("word2vec.model")
        rm_tmp_file("word2vec.model.vector")
        rm_tmp_file("spam_email_text_1000")
Exemple #9
0
def load_local_data(filename):
    # type: (Text) -> TrainingData
    """Loads training data stored in the rasa NLU data format."""

    with io.open(filename, encoding="utf-8-sig") as f:
        data = simplejson.loads(f.read())
    validate_local_data(data)

    data_set = data.get("data_set", list())

    training_examples = []
    for e in data_set:
        data = e.copy()
        if "text" in data:
            del data["text"]
        training_examples.append(Message(e["text"], data))

    return TrainingData(training_examples)
Exemple #10
0
    def test_sgd_classify(self):
        cfg = AnnotatorConfig()
        train_data = TrainingData(
            [self.neg_msg1, self.neg_msg2, self.pos_msg1, self.pos_msg2])
        cb = ComponentBuilder()
        char_tokenize = cb.create_component("char_tokenizer", cfg)
        sent_embedding = cb.create_component("sentence_embedding_extractor",
                                             cfg)
        SGD_Classifier = cb.create_component("SGD_Classifier", cfg)
        char_tokenize.train(train_data, cfg)
        sent_embedding.train(train_data, cfg)
        SGD_Classifier.train(train_data, cfg)
        # test
        test_msg = Message(u"增加一个需要上传的文件")
        char_tokenize.process(test_msg, **{})
        sent_embedding.process(test_msg, **{})
        SGD_Classifier.process(test_msg, **{})

        assert test_msg.get("classifylabel").get("name") == "bad"
    def train(self, data_set):
        """
        train data set
        :param data_set: format as [{"id": 1, "text": "我是测试", "label": "spam"}, .....]
        :return:
        """
        config = self.config

        examples = []
        for e in data_set:
            data = e.copy()
            if "text" in data:
                del data["text"]
            examples.append(Message(e["text"], data))
        train_data = TrainingData(examples)

        self.interpreter = self.trainer.train(train_data)
        # overwrite save model TODO
        self.trainer.persist(config['path'], config['project'],
                             config['fixed_model_name'])