def get_vdf_info_and_proof( constants: ConsensusConstants, vdf_input: ClassgroupElement, challenge_hash: bytes32, number_iters: uint64, ) -> Tuple[VDFInfo, VDFProof]: int_size = (constants.DISCRIMINANT_SIZE_BITS + 16) >> 4 result: bytes = prove( bytes(challenge_hash), str(vdf_input.a), str(vdf_input.b), constants.DISCRIMINANT_SIZE_BITS, number_iters, ) output = ClassgroupElement( int512(int.from_bytes( result[0:int_size], "big", signed=True, )), int512( int.from_bytes( result[int_size:2 * int_size], "big", signed=True, )), ) proof_bytes = result[2 * int_size:4 * int_size] return VDFInfo(challenge_hash, number_iters, output), VDFProof(uint8(0), proof_bytes)
def test_prove_and_verify(): discriminant_challenge = secrets.token_bytes(10) discriminant_size = 512 discriminant = create_discriminant(discriminant_challenge, discriminant_size) form_size = 100 initial_el = b"\x08" + (b"\x00" * 99) iters = 1000000 t1 = time.time() result = prove(discriminant_challenge, initial_el, discriminant_size, iters) t2 = time.time() print(f"IPS: {iters / (t2 - t1)}") result_y = result[:form_size] proof = result[form_size:2 * form_size] is_valid = verify_wesolowski( str(discriminant), initial_el, result_y, proof, iters, ) assert is_valid # Creates another proof starting at the previous output iters_2 = 200000 t1 = time.time() result_2 = prove( discriminant_challenge, result_y, discriminant_size, iters_2, ) t2 = time.time() print(f"IPS: {iters_2 / (t2 - t1)}") is_valid = verify_wesolowski( str(discriminant), result_y, result_2[:form_size], result_2[form_size:2 * form_size], iters_2, ) assert is_valid
def test_prove_and_verify(): discriminant_challenge = secrets.token_bytes(10) discriminant_size = 512 discriminant = create_discriminant(discriminant_challenge, discriminant_size) int_size = (discriminant_size + 16) >> 4 iters = 1000000 t1 = time.time() result = prove(discriminant_challenge, discriminant_size, iters) t2 = time.time() print(f"IPS: {iters / (t2 - t1)}") is_valid = verify_wesolowski( str(discriminant), str(2), str(1), str( int.from_bytes( result[0:int_size], "big", signed=True, ) ), str( int.from_bytes( result[int_size:2 * int_size], "big", signed=True, ) ), str( int.from_bytes( result[2 * int_size:3 * int_size], "big", signed=True, ) ), str( int.from_bytes( result[3 * int_size:4 * int_size], "big", signed=True, ) ), iters, ) assert is_valid
def get_vdf_info_and_proof( constants: ConsensusConstants, vdf_input: ClassgroupElement, challenge_hash: bytes32, number_iters: uint64, ) -> Tuple[VDFInfo, VDFProof]: form_size = ClassgroupElement.get_size(constants) result: bytes = prove( bytes(challenge_hash), vdf_input.data, constants.DISCRIMINANT_SIZE_BITS, number_iters, ) output = ClassgroupElement.from_bytes(result[:form_size]) proof_bytes = result[form_size:2 * form_size] return VDFInfo(challenge_hash, number_iters, output), VDFProof(uint8(0), proof_bytes)
def _create_block( self, test_constants: ConsensusConstants, challenge_hash: bytes32, height: uint32, prev_header_hash: bytes32, prev_iters: uint64, prev_weight: uint128, timestamp: uint64, difficulty: int, min_iters: int, seed: bytes, genesis: bool = False, reward_puzzlehash: bytes32 = None, transactions: Program = None, aggsig: G2Element = None, fees: uint64 = uint64(0), ) -> FullBlock: """ Creates a block with the specified details. Uses the stored plots to create a proof of space, and also evaluates the VDF for the proof of time. """ selected_plot_info = None selected_proof_index = 0 selected_quality: Optional[bytes] = None best_quality = 0 plots = [ pinfo for _, pinfo in sorted(list(self.plots.items()), key=lambda x: str(x[0])) ] if self.use_any_pos: random.seed(seed) for i in range(len(plots) * 3): # Allow passing in seed, to create reorgs and different chains seeded_pn = random.randint(0, len(plots) - 1) plot_info = plots[seeded_pn] plot_id = plot_info.prover.get_id() ccp = ProofOfSpace.can_create_proof( plot_id, challenge_hash, test_constants.NUMBER_ZERO_BITS_CHALLENGE_SIG, ) if not ccp: continue qualities = plot_info.prover.get_qualities_for_challenge( challenge_hash) if len(qualities) > 0: selected_plot_info = plot_info selected_quality = qualities[0] break else: for i in range(len(plots)): plot_info = plots[i] j = 0 plot_id = plot_info.prover.get_id() ccp = ProofOfSpace.can_create_proof( plot_id, challenge_hash, test_constants.NUMBER_ZERO_BITS_CHALLENGE_SIG, ) if not ccp: continue qualities = plot_info.prover.get_qualities_for_challenge( challenge_hash) for quality in qualities: qual_int = int.from_bytes(quality, "big", signed=False) if qual_int > best_quality: best_quality = qual_int selected_quality = quality selected_plot_info = plot_info selected_proof_index = j j += 1 assert selected_plot_info is not None if selected_quality is None: raise RuntimeError("No proofs for this challenge") proof_xs: bytes = selected_plot_info.prover.get_full_proof( challenge_hash, selected_proof_index) plot_pk = ProofOfSpace.generate_plot_public_key( selected_plot_info.local_sk.get_g1(), selected_plot_info.farmer_public_key, ) proof_of_space: ProofOfSpace = ProofOfSpace( challenge_hash, selected_plot_info.pool_public_key, plot_pk, selected_plot_info.prover.get_size(), proof_xs, ) number_iters: uint64 = pot_iterations.calculate_iterations( proof_of_space, difficulty, min_iters, test_constants.NUMBER_ZERO_BITS_CHALLENGE_SIG, ) if self.real_plots: print(f"Performing {number_iters} VDF iterations") int_size = (test_constants.DISCRIMINANT_SIZE_BITS + 16) >> 4 result = prove(challenge_hash, test_constants.DISCRIMINANT_SIZE_BITS, number_iters) output = ClassgroupElement( int512(int.from_bytes( result[0:int_size], "big", signed=True, )), int512( int.from_bytes( result[int_size:2 * int_size], "big", signed=True, )), ) proof_bytes = result[2 * int_size:4 * int_size] proof_of_time = ProofOfTime( challenge_hash, number_iters, output, uint8(0), proof_bytes, ) # Use the extension data to create different blocks based on header hash extension_data: bytes32 = bytes32( [random.randint(0, 255) for _ in range(32)]) cost = uint64(0) fee_reward = uint64(block_rewards.calculate_base_fee(height) + fees) std_hash(std_hash(height)) # Create filter byte_array_tx: List[bytes32] = [] tx_additions: List[Coin] = [] tx_removals: List[bytes32] = [] if transactions: error, npc_list, _ = get_name_puzzle_conditions(transactions) additions: List[Coin] = additions_for_npc(npc_list) for coin in additions: tx_additions.append(coin) byte_array_tx.append(bytearray(coin.puzzle_hash)) for npc in npc_list: tx_removals.append(npc.coin_name) byte_array_tx.append(bytearray(npc.coin_name)) farmer_ph = self.farmer_ph pool_ph = self.pool_ph if reward_puzzlehash is not None: farmer_ph = reward_puzzlehash pool_ph = reward_puzzlehash byte_array_tx.append(bytearray(farmer_ph)) byte_array_tx.append(bytearray(pool_ph)) bip158: PyBIP158 = PyBIP158(byte_array_tx) encoded = bytes(bip158.GetEncoded()) removal_merkle_set = MerkleSet() addition_merkle_set = MerkleSet() # Create removal Merkle set for coin_name in tx_removals: removal_merkle_set.add_already_hashed(coin_name) # Create addition Merkle set puzzlehash_coin_map: Dict[bytes32, List[Coin]] = {} cb_reward = calculate_block_reward(height) cb_coin = create_coinbase_coin(height, pool_ph, cb_reward) fees_coin = create_fees_coin(height, farmer_ph, fee_reward) for coin in tx_additions + [cb_coin, fees_coin]: if coin.puzzle_hash in puzzlehash_coin_map: puzzlehash_coin_map[coin.puzzle_hash].append(coin) else: puzzlehash_coin_map[coin.puzzle_hash] = [coin] # Addition Merkle set contains puzzlehash and hash of all coins with that puzzlehash for puzzle, coins in puzzlehash_coin_map.items(): addition_merkle_set.add_already_hashed(puzzle) addition_merkle_set.add_already_hashed(hash_coin_list(coins)) additions_root = addition_merkle_set.get_root() removal_root = removal_merkle_set.get_root() generator_hash = (transactions.get_tree_hash() if transactions is not None else bytes32([0] * 32)) filter_hash = std_hash(encoded) pool_target = PoolTarget(pool_ph, uint32(height)) pool_target_signature = self.get_pool_key_signature( pool_target, proof_of_space.pool_public_key) assert pool_target_signature is not None final_aggsig: G2Element = pool_target_signature if aggsig is not None: final_aggsig = AugSchemeMPL.aggregate([final_aggsig, aggsig]) header_data: HeaderData = HeaderData( height, prev_header_hash, timestamp, filter_hash, proof_of_space.get_hash(), uint128(prev_weight + difficulty), uint64(prev_iters + number_iters), additions_root, removal_root, farmer_ph, fee_reward, pool_target, final_aggsig, cost, extension_data, generator_hash, ) header_hash_sig: G2Element = self.get_plot_signature( header_data, plot_pk) header: Header = Header(header_data, header_hash_sig) full_block: FullBlock = FullBlock(proof_of_space, proof_of_time, header, transactions, encoded) return full_block
def _create_block( self, test_constants: Dict, challenge_hash: bytes32, height: uint32, prev_header_hash: bytes32, prev_iters: uint64, prev_weight: uint128, timestamp: uint64, difficulty: uint64, min_iters: uint64, seed: bytes, genesis: bool = False, reward_puzzlehash: bytes32 = None, transactions: Program = None, aggsig: BLSSignature = None, fees: uint64 = uint64(0), ) -> FullBlock: """ Creates a block with the specified details. Uses the stored plots to create a proof of space, and also evaluates the VDF for the proof of time. """ selected_prover = None selected_plot_sk = None selected_pool_sk = None selected_proof_index = 0 plots = list(self.plot_config["plots"].items()) selected_quality: Optional[bytes] = None best_quality = 0 if self.use_any_pos: for i in range(len(plots) * 3): # Allow passing in seed, to create reorgs and different chains random.seed(seed + i.to_bytes(4, "big")) seeded_pn = random.randint(0, len(plots) - 1) pool_sk = PrivateKey.from_bytes( bytes.fromhex(plots[seeded_pn][1]["pool_sk"]) ) plot_sk = PrivateKey.from_bytes( bytes.fromhex(plots[seeded_pn][1]["sk"]) ) prover = DiskProver(plots[seeded_pn][0]) qualities = prover.get_qualities_for_challenge(challenge_hash) if len(qualities) > 0: if self.use_any_pos: selected_quality = qualities[0] selected_prover = prover selected_pool_sk = pool_sk selected_plot_sk = plot_sk break else: for i in range(len(plots)): pool_sk = PrivateKey.from_bytes(bytes.fromhex(plots[i][1]["pool_sk"])) plot_sk = PrivateKey.from_bytes(bytes.fromhex(plots[i][1]["sk"])) prover = DiskProver(plots[i][0]) qualities = prover.get_qualities_for_challenge(challenge_hash) j = 0 for quality in qualities: qual_int = int.from_bytes(quality, "big", signed=False) if qual_int > best_quality: best_quality = qual_int selected_quality = quality selected_prover = prover selected_pool_sk = pool_sk selected_plot_sk = plot_sk selected_proof_index = j j += 1 assert selected_prover assert selected_pool_sk assert selected_plot_sk pool_pk = selected_pool_sk.get_public_key() plot_pk = selected_plot_sk.get_public_key() if selected_quality is None: raise RuntimeError("No proofs for this challenge") proof_xs: bytes = selected_prover.get_full_proof( challenge_hash, selected_proof_index ) proof_of_space: ProofOfSpace = ProofOfSpace( challenge_hash, pool_pk, plot_pk, selected_prover.get_size(), proof_xs ) number_iters: uint64 = pot_iterations.calculate_iterations( proof_of_space, difficulty, min_iters ) # print("Doing iters", number_iters) int_size = (test_constants["DISCRIMINANT_SIZE_BITS"] + 16) >> 4 result = prove( challenge_hash, test_constants["DISCRIMINANT_SIZE_BITS"], number_iters ) output = ClassgroupElement( int512(int.from_bytes(result[0:int_size], "big", signed=True,)), int512( int.from_bytes(result[int_size : 2 * int_size], "big", signed=True,) ), ) proof_bytes = result[2 * int_size : 4 * int_size] proof_of_time = ProofOfTime( challenge_hash, number_iters, output, self.n_wesolowski, proof_bytes, ) if not reward_puzzlehash: reward_puzzlehash = self.fee_target # Use the extension data to create different blocks based on header hash extension_data: bytes32 = bytes32([random.randint(0, 255) for _ in range(32)]) cost = uint64(0) coinbase_reward = block_rewards.calculate_block_reward(height) fee_reward = uint64(block_rewards.calculate_base_fee(height) + fees) coinbase_coin, coinbase_signature = create_coinbase_coin_and_signature( height, reward_puzzlehash, coinbase_reward, selected_pool_sk ) parent_coin_name = std_hash(std_hash(height)) fees_coin = Coin(parent_coin_name, reward_puzzlehash, uint64(fee_reward)) # Create filter byte_array_tx: List[bytes32] = [] tx_additions: List[Coin] = [] tx_removals: List[bytes32] = [] encoded = None if transactions: error, npc_list, _ = get_name_puzzle_conditions(transactions) additions: List[Coin] = additions_for_npc(npc_list) for coin in additions: tx_additions.append(coin) byte_array_tx.append(bytearray(coin.puzzle_hash)) for npc in npc_list: tx_removals.append(npc.coin_name) byte_array_tx.append(bytearray(npc.coin_name)) bip158: PyBIP158 = PyBIP158(byte_array_tx) encoded = bytes(bip158.GetEncoded()) removal_merkle_set = MerkleSet() addition_merkle_set = MerkleSet() # Create removal Merkle set for coin_name in tx_removals: removal_merkle_set.add_already_hashed(coin_name) # Create addition Merkle set puzzlehash_coin_map: Dict[bytes32, List[Coin]] = {} for coin in tx_additions: if coin.puzzle_hash in puzzlehash_coin_map: puzzlehash_coin_map[coin.puzzle_hash].append(coin) else: puzzlehash_coin_map[coin.puzzle_hash] = [coin] # Addition Merkle set contains puzzlehash and hash of all coins with that puzzlehash for puzzle, coins in puzzlehash_coin_map.items(): addition_merkle_set.add_already_hashed(puzzle) addition_merkle_set.add_already_hashed(hash_coin_list(coins)) additions_root = addition_merkle_set.get_root() removal_root = removal_merkle_set.get_root() generator_hash = ( transactions.get_tree_hash() if transactions is not None else bytes32([0] * 32) ) filter_hash = std_hash(encoded) if encoded is not None else bytes32([0] * 32) header_data: HeaderData = HeaderData( height, prev_header_hash, timestamp, filter_hash, proof_of_space.get_hash(), uint128(prev_weight + difficulty), uint64(prev_iters + number_iters), additions_root, removal_root, coinbase_coin, coinbase_signature, fees_coin, aggsig, cost, extension_data, generator_hash, ) header_hash_sig: PrependSignature = selected_plot_sk.sign_prepend( header_data.get_hash() ) header: Header = Header(header_data, header_hash_sig) full_block: FullBlock = FullBlock( proof_of_space, proof_of_time, header, transactions, encoded ) return full_block