Exemple #1
0
def evaluation():
    logger = logging.getLogger(__name__)
    x = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, FLAGS.segment_len])
    seq_length = tf.placeholder(tf.int32, shape=[FLAGS.batch_size])
    training = tf.placeholder(tf.bool)
    config_path = os.path.join(FLAGS.model, 'model.json')
    model_configure = chiron_model.read_config(config_path)

    logits, ratio = chiron_model.inference(x,
                                           seq_length,
                                           training=training,
                                           full_sequence_len=FLAGS.segment_len,
                                           configure=model_configure)
    config = tf.ConfigProto(allow_soft_placement=True,
                            intra_op_parallelism_threads=FLAGS.threads,
                            inter_op_parallelism_threads=FLAGS.threads)
    config.gpu_options.allow_growth = True
    tqdm.monitor_interval = 0
    logits_index = tf.placeholder(tf.int32, shape=())
    logits_fname = tf.placeholder(tf.string, shape=())
    logits_queue = tf.FIFOQueue(
        capacity=1000,
        dtypes=[tf.float32, tf.string, tf.int32, tf.int32],
        shapes=[
            logits.shape, logits_fname.shape, logits_index.shape,
            seq_length.shape
        ])
    logits_queue_size = logits_queue.size()
    logits_enqueue = logits_queue.enqueue(
        (logits, logits_fname, logits_index, seq_length))
    logits_queue_close = logits_queue.close()
    ### Decoding logits into bases
    decode_predict_op, decode_prob_op, decoded_fname_op, decode_idx_op, decode_queue_size = decoding_queue(
        logits_queue)
    saver = tf.train.Saver()
    with tf.train.MonitoredSession(
            session_creator=tf.train.ChiefSessionCreator(
                config=config)) as sess:
        saver.restore(sess, tf.train.latest_checkpoint(FLAGS.model))
        if os.path.isdir(FLAGS.input):
            file_list = os.listdir(FLAGS.input)
            file_dir = FLAGS.input
        else:
            file_list = [os.path.basename(FLAGS.input)]
            file_dir = os.path.abspath(
                os.path.join(FLAGS.input, os.path.pardir))

        if not os.path.exists(FLAGS.output):
            os.makedirs(FLAGS.output)
        if not os.path.exists(os.path.join(FLAGS.output, 'segments')):
            os.makedirs(os.path.join(FLAGS.output, 'segments'))
        if not os.path.exists(os.path.join(FLAGS.output, 'result')):
            os.makedirs(os.path.join(FLAGS.output, 'result'))
        if not os.path.exists(os.path.join(FLAGS.output, 'meta')):
            os.makedirs(os.path.join(FLAGS.output, 'meta'))

        def worker_fn():
            for name in tqdm(file_list, desc="Logits inferencing.",
                             position=0):
                if not name.endswith('.signal'):
                    continue
                input_path = os.path.join(file_dir, name)
                eval_data = read_data_for_eval(input_path,
                                               FLAGS.start,
                                               seg_length=FLAGS.segment_len,
                                               step=FLAGS.jump)
                reads_n = eval_data.reads_n
                for i in trange(0,
                                reads_n,
                                FLAGS.batch_size,
                                desc="Logits inferencing",
                                position=1):
                    batch_x, seq_len, _ = eval_data.next_batch(
                        FLAGS.batch_size, shuffle=False, sig_norm=False)
                    batch_x = np.pad(batch_x,
                                     ((0, FLAGS.batch_size - len(batch_x)),
                                      (0, 0)),
                                     mode='constant')
                    seq_len = np.pad(seq_len,
                                     ((0, FLAGS.batch_size - len(seq_len))),
                                     mode='constant')
                    feed_dict = {
                        x: batch_x,
                        seq_length: seq_len,
                        training: False,
                        logits_index: i,
                        logits_fname: name,
                    }
                    sess.run(logits_enqueue, feed_dict=feed_dict)
            sess.run(logits_queue_close)

        def run_listener(write_lock):
            # This function is used to solve the error when tqdm is used inside thread
            # https://github.com/tqdm/tqdm/issues/323
            tqdm.set_lock(write_lock)
            worker_fn()

        write_lock = threading.Lock()
        worker = threading.Thread(target=run_listener, args=(write_lock, ))
        worker.setDaemon(True)
        worker.start()

        val = defaultdict(
            dict)  # We could read vals out of order, that's why it's a dict
        for name in tqdm(file_list, desc="CTC decoding.", position=2):
            start_time = time.time()
            if not name.endswith('.signal'):
                continue
            file_pre = os.path.splitext(name)[0]
            input_path = os.path.join(file_dir, name)
            if FLAGS.mode == 'rna':
                eval_data = read_data_for_eval(input_path,
                                               FLAGS.start,
                                               seg_length=FLAGS.segment_len,
                                               step=FLAGS.jump,
                                               reverse=True)
            else:
                eval_data = read_data_for_eval(input_path,
                                               FLAGS.start,
                                               seg_length=FLAGS.segment_len,
                                               step=FLAGS.jump)
            reads_n = eval_data.reads_n
            reading_time = time.time() - start_time
            reads = list()

            N = len(range(0, reads_n, FLAGS.batch_size))
            with tqdm(total=reads_n, desc="ctc decoding", position=3) as pbar:
                while True:
                    options = tf.RunOptions(
                        trace_level=tf.RunOptions.FULL_TRACE)
                    run_metadata = tf.RunMetadata()
                    l_sz, d_sz = sess.run(
                        [logits_queue_size, decode_queue_size],
                        options=options,
                        run_metadata=run_metadata)
                    pbar.set_postfix(logits_q=l_sz,
                                     decoded_q=d_sz,
                                     refresh=False)
                    decode_ops = [
                        decoded_fname_op, decode_idx_op, decode_predict_op,
                        decode_prob_op
                    ]
                    decoded_fname, i, predict_val, logits_prob = sess.run(
                        decode_ops,
                        feed_dict={training: False},
                        options=options,
                        run_metadata=run_metadata)
                    decoded_fname = decoded_fname.decode("UTF-8")
                    val[decoded_fname][i] = (predict_val, logits_prob)

                    fetched_timeline = timeline.Timeline(
                        run_metadata.step_stats)
                    chrome_trace = fetched_timeline.generate_chrome_trace_format(
                    )
                    with open('timeline_02_step_%d.json' % i, 'w') as f:
                        f.write(chrome_trace)

                    if decoded_fname == name:
                        decoded_cnt = len(val[name])
                        pbar.update(
                            min(reads_n, decoded_cnt * FLAGS.batch_size) -
                            (decoded_cnt - 1) * FLAGS.batch_size)
                        if decoded_cnt == N:
                            break

            qs_list = np.empty((0, 1), dtype=np.float)
            qs_string = None
            for i in trange(0,
                            reads_n,
                            FLAGS.batch_size,
                            desc="Output",
                            position=4):
                predict_val, logits_prob = val[name][i]
                predict_read, unique = sparse2dense(predict_val)
                predict_read = predict_read[0]
                unique = unique[0]

                if FLAGS.extension == 'fastq':
                    logits_prob = logits_prob[unique]
                if i + FLAGS.batch_size > reads_n:
                    predict_read = predict_read[:reads_n - i]
                    if FLAGS.extension == 'fastq':
                        logits_prob = logits_prob[:reads_n - i]
                if FLAGS.extension == 'fastq':
                    qs_list = np.concatenate((qs_list, logits_prob))
                reads += predict_read
            val.pop(name)  # Release the memory

            # tqdm.write("[%s] Segment reads base calling finished, begin to assembly. %5.2f seconds" % (name, time.time() - start_time))
            basecall_time = time.time() - start_time
            bpreads = [index2base(read) for read in reads]
            if FLAGS.extension == 'fastq':
                consensus, qs_consensus = simple_assembly_qs(bpreads, qs_list)
                qs_string = qs(consensus, qs_consensus)
            else:
                consensus = simple_assembly(bpreads)
            c_bpread = index2base(np.argmax(consensus, axis=0))
            np.set_printoptions(threshold=np.nan)
            assembly_time = time.time() - start_time
            # tqdm.write("[%s] Assembly finished, begin output. %5.2f seconds" % (name, time.time() - start_time))
            list_of_time = [
                start_time, reading_time, basecall_time, assembly_time
            ]
            write_output(bpreads,
                         c_bpread,
                         list_of_time,
                         file_pre,
                         concise=FLAGS.concise,
                         suffix=FLAGS.extension,
                         q_score=qs_string)
Exemple #2
0
def evaluation():
    pbars = multi_pbars(
        ["Logits(batches)", "ctc(batches)", "logits(files)", "ctc(files)"])
    x = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, FLAGS.segment_len])
    seq_length = tf.placeholder(tf.int32, shape=[FLAGS.batch_size])
    training = tf.placeholder(tf.bool)
    config_path = os.path.join(FLAGS.model, 'model.json')
    model_configure = chiron_model.read_config(config_path)

    logits, ratio = chiron_model.inference(x,
                                           seq_length,
                                           training=training,
                                           full_sequence_len=FLAGS.segment_len,
                                           configure=model_configure)
    config = tf.ConfigProto(allow_soft_placement=True,
                            intra_op_parallelism_threads=FLAGS.threads,
                            inter_op_parallelism_threads=FLAGS.threads)
    config.gpu_options.allow_growth = True
    logits_index = tf.placeholder(tf.int32, shape=[FLAGS.batch_size])
    logits_fname = tf.placeholder(tf.string, shape=[FLAGS.batch_size])
    logits_queue = tf.FIFOQueue(
        capacity=1000,
        dtypes=[tf.float32, tf.string, tf.int32, tf.int32],
        shapes=[
            logits.shape, logits_fname.shape, logits_index.shape,
            seq_length.shape
        ])
    logits_queue_size = logits_queue.size()
    logits_enqueue = logits_queue.enqueue(
        (logits, logits_fname, logits_index, seq_length))
    logits_queue_close = logits_queue.close()
    ### Decoding logits into bases
    decode_predict_op, decode_prob_op, decoded_fname_op, decode_idx_op, decode_queue_size = decoding_queue(
        logits_queue)
    saver = tf.train.Saver(var_list=tf.trainable_variables() +
                           tf.moving_average_variables())
    with tf.train.MonitoredSession(
            session_creator=tf.train.ChiefSessionCreator(
                config=config)) as sess:
        saver.restore(sess, tf.train.latest_checkpoint(FLAGS.model))
        if os.path.isdir(FLAGS.input):
            file_list = os.listdir(FLAGS.input)
            file_dir = FLAGS.input
        else:
            file_list = [os.path.basename(FLAGS.input)]
            file_dir = os.path.abspath(
                os.path.join(FLAGS.input, os.path.pardir))
        file_n = len(file_list)
        pbars.update(2, total=file_n)
        pbars.update(3, total=file_n)
        if not os.path.exists(FLAGS.output):
            os.makedirs(FLAGS.output)
        if not os.path.exists(os.path.join(FLAGS.output, 'segments')):
            os.makedirs(os.path.join(FLAGS.output, 'segments'))
        if not os.path.exists(os.path.join(FLAGS.output, 'result')):
            os.makedirs(os.path.join(FLAGS.output, 'result'))
        if not os.path.exists(os.path.join(FLAGS.output, 'meta')):
            os.makedirs(os.path.join(FLAGS.output, 'meta'))

        def worker_fn():
            batch_x = np.asarray([[]]).reshape(0, FLAGS.segment_len)
            seq_len = np.asarray([])
            logits_idx = np.asarray([])
            logits_fn = np.asarray([])
            for f_i, name in enumerate(file_list):
                if not name.endswith('.signal'):
                    continue
                input_path = os.path.join(file_dir, name)
                eval_data = read_data_for_eval(input_path,
                                               FLAGS.start,
                                               seg_length=FLAGS.segment_len,
                                               step=FLAGS.jump)
                reads_n = eval_data.reads_n
                pbars.update(0, total=reads_n, progress=0)
                pbars.update_bar()
                i = 0
                while (eval_data.epochs_completed == 0):
                    current_batch, current_seq_len, _ = eval_data.next_batch(
                        FLAGS.batch_size - len(batch_x), shuffle=False)
                    current_n = len(current_batch)
                    batch_x = np.concatenate((batch_x, current_batch), axis=0)
                    seq_len = np.concatenate((seq_len, current_seq_len),
                                             axis=0)
                    logits_idx = np.concatenate((logits_idx, [i] * current_n),
                                                axis=0)
                    logits_fn = np.concatenate((logits_fn, [name] * current_n),
                                               axis=0)
                    i += current_n
                    if len(batch_x) < FLAGS.batch_size:
                        pbars.update(0, progress=i)
                        pbars.update_bar()
                        continue
                    feed_dict = {
                        x: batch_x,
                        seq_length: np.round(seq_len / ratio).astype(np.int32),
                        training: False,
                        logits_index: logits_idx,
                        logits_fname: logits_fn,
                    }
                    #Training: Set it to  True for a temporary fix of the batch normalization problem: https://github.com/haotianteng/Chiron/commit/8fce3a3b4dac8e9027396bb8c9152b7b5af953ce
                    #TODO: change the training FLAG back to False after the new model has been trained.
                    sess.run(logits_enqueue, feed_dict=feed_dict)
                    batch_x = np.asarray([[]]).reshape(0, FLAGS.segment_len)
                    seq_len = np.asarray([])
                    logits_idx = np.asarray([])
                    logits_fn = np.asarray([])
                    pbars.update(0, progress=i)
                    pbars.update_bar()
                pbars.update(2, progress=f_i + 1)
                pbars.update_bar()
            ### All files has been processed.
            batch_n = len(batch_x)
            if batch_n > 0:
                pad_width = FLAGS.batch_size - batch_n
                batch_x = np.pad(batch_x, ((0, pad_width), (0, 0)),
                                 mode='wrap')
                seq_len = np.pad(seq_len, ((0, pad_width)), mode='wrap')
                logits_idx = np.pad(logits_idx, (0, pad_width),
                                    mode='constant',
                                    constant_values=-1)
                logits_fn = np.pad(logits_fn, (0, pad_width),
                                   mode='constant',
                                   constant_values='')
                sess.run(logits_enqueue,
                         feed_dict={
                             x: batch_x,
                             seq_length:
                             np.round(seq_len / ratio).astype(np.int32),
                             training: False,
                             logits_index: logits_idx,
                             logits_fname: logits_fn,
                         })
            sess.run(logits_queue_close)


#

        worker = threading.Thread(target=worker_fn, args=())
        worker.setDaemon(True)
        worker.start()

        val = defaultdict(
            dict)  # We could read vals out of order, that's why it's a dict
        for f_i, name in enumerate(file_list):
            start_time = time.time()
            if not name.endswith('.signal'):
                continue
            file_pre = os.path.splitext(name)[0]
            input_path = os.path.join(file_dir, name)
            if FLAGS.mode == 'rna':
                eval_data = read_data_for_eval(input_path,
                                               FLAGS.start,
                                               seg_length=FLAGS.segment_len,
                                               step=FLAGS.jump)
            else:
                eval_data = read_data_for_eval(input_path,
                                               FLAGS.start,
                                               seg_length=FLAGS.segment_len,
                                               step=FLAGS.jump)
            reads_n = eval_data.reads_n
            pbars.update(1, total=reads_n, progress=0)
            pbars.update_bar()
            reading_time = time.time() - start_time
            reads = list()
            if 'total_count' not in val[name].keys():
                val[name]['total_count'] = 0
            if 'index_list' not in val[name].keys():
                val[name]['index_list'] = []
            while True:
                l_sz, d_sz = sess.run([logits_queue_size, decode_queue_size])
                if val[name]['total_count'] == reads_n:
                    pbars.update(1, progress=val[name]['total_count'])
                    break
                decode_ops = [
                    decoded_fname_op, decode_idx_op, decode_predict_op,
                    decode_prob_op
                ]
                decoded_fname, i, predict_val, logits_prob = sess.run(
                    decode_ops, feed_dict={training: False})
                decoded_fname = np.asarray(
                    [x.decode("UTF-8") for x in decoded_fname])
                ##Have difficulties integrate it into the tensorflow graph, as the number of file names in a batch is variable.
                ##And for loop can't be implemented as the eager execution is disabled due to the use of queue.
                uniq_fname, uniq_fn_idx = np.unique(decoded_fname,
                                                    return_index=True)
                for fn_idx, fn in enumerate(uniq_fname):
                    i = uniq_fn_idx[fn_idx]
                    if fn != '':
                        occurance = np.where(decoded_fname == fn)[0]
                        start = occurance[0]
                        end = occurance[-1] + 1
                        assert (len(occurance) == end - start)
                        if 'total_count' not in val[fn].keys():
                            val[fn]['total_count'] = 0
                        if 'index_list' not in val[fn].keys():
                            val[fn]['index_list'] = []
                        val[fn]['total_count'] += (end - start)
                        val[fn]['index_list'].append(i)
                        sliced_sparse = slice_ctc_decoding_result(
                            predict_val, start, end)
                        val[fn][i] = (sliced_sparse,
                                      logits_prob[decoded_fname == fn])
                pbars.update(1, progress=val[name]['total_count'])
                pbars.update_bar()

            pbars.update(3, progress=f_i + 1)
            pbars.update_bar()
            qs_list = np.empty((0, 1), dtype=np.float)
            qs_string = None
            for i in np.sort(val[name]['index_list']):
                predict_val, logits_prob = val[name][i]
                predict_read, unique = sparse2dense(predict_val)
                predict_read = predict_read[0]
                unique = unique[0]

                if FLAGS.extension == 'fastq':
                    logits_prob = logits_prob[unique]
                if FLAGS.extension == 'fastq':
                    qs_list = np.concatenate((qs_list, logits_prob))
                reads += predict_read
            val.pop(name)  # Release the memory
            basecall_time = time.time() - start_time
            bpreads = [index2base(read) for read in reads]
            js_ratio = FLAGS.jump / FLAGS.segment_len
            kernal = get_assembler_kernal(FLAGS.jump, FLAGS.segment_len)
            if FLAGS.extension == 'fastq':
                consensus, qs_consensus = simple_assembly_qs(bpreads,
                                                             qs_list,
                                                             js_ratio,
                                                             kernal=kernal)
                qs_string = qs(consensus, qs_consensus)
            else:
                consensus = simple_assembly(bpreads, js_ratio, kernal=kernal)
            c_bpread = index2base(np.argmax(consensus, axis=0))
            assembly_time = time.time() - start_time
            list_of_time = [
                start_time, reading_time, basecall_time, assembly_time
            ]
            write_output(bpreads,
                         c_bpread,
                         list_of_time,
                         file_pre,
                         concise=FLAGS.concise,
                         suffix=FLAGS.extension,
                         q_score=qs_string,
                         global_setting=FLAGS)
    pbars.end()
Exemple #3
0
def evaluation():
    config_path = os.path.join(FLAGS.model, 'model.json')
    model_configure = chiron_model.read_config(config_path)
    net = build_eval_graph(model_configure)
    val = defaultdict(
        dict)  # We could read vals out of order, that's why it's a dict
    for f_i, name in enumerate(net.file_list):
        start_time = time.time()
        if (not name.endswith('.signal')) and (not name.endswith('.fast5')):
            continue
        file_pre = os.path.splitext(name)[0]
        input_path = os.path.join(net.file_dir, name)
        ###Other mode (like methylation) may use different read method.
        eval_data = read_data_for_eval(input_path,
                                       FLAGS.start,
                                       seg_length=FLAGS.segment_len,
                                       step=FLAGS.jump,
                                       reverse_fast5=FLAGS.reverse_fast5)
        reads_n = eval_data.reads_n
        net.pbars.update(1, total=reads_n, progress=0)
        net.pbars.update_bar()
        reading_time = time.time() - start_time
        reads = list()
        if 'total_count' not in val[name].keys():
            val[name]['total_count'] = 0
        if 'index_list' not in val[name].keys():
            val[name]['index_list'] = []
        while True:
            l_sz, d_sz = net.sess.run(
                [net.logits_queue_size, net.decode_queue_size])
            if val[name]['total_count'] == reads_n:
                net.pbars.update(1, progress=val[name]['total_count'])
                break
            decode_ops = [
                net.decoded_fname_op, net.decode_idx_op, net.decode_predict_op,
                net.decode_prob_op
            ]
            decoded_fname, i, predict_val, logits_prob = net.sess.run(
                decode_ops, feed_dict={net.training: False})
            decoded_fname = np.asarray(
                [x.decode("UTF-8") for x in decoded_fname])
            ##Have difficulties integrate it into the tensorflow graph, as the number of file names in a batch is uncertain.
            ##And for loop can't be implemented as the eager execution is disabled due to the use of queue.
            uniq_fname, uniq_fn_idx = np.unique(decoded_fname,
                                                return_index=True)
            for fn_idx, fn in enumerate(uniq_fname):
                i = uniq_fn_idx[fn_idx]
                if fn != '':
                    occurance = np.where(decoded_fname == fn)[0]
                    start = occurance[0]
                    end = occurance[-1] + 1
                    assert (len(occurance) == end - start)
                    if 'total_count' not in val[fn].keys():
                        val[fn]['total_count'] = 0
                    if 'index_list' not in val[fn].keys():
                        val[fn]['index_list'] = []
                    val[fn]['total_count'] += (end - start)
                    val[fn]['index_list'].append(i)
                    sliced_sparse = slice_ctc_decoding_result(
                        predict_val, start, end)
                    val[fn][i] = (sliced_sparse,
                                  logits_prob[decoded_fname == fn])
            net.pbars.update(1, progress=val[name]['total_count'])
            net.pbars.update_bar()

        net.pbars.update(3, progress=f_i + 1)
        net.pbars.update_bar()
        qs_list = np.empty((0, 1), dtype=np.float)
        qs_string = None
        for i in np.sort(val[name]['index_list']):
            predict_val, logits_prob = val[name][i]
            predict_read, unique = sparse2dense(predict_val)
            predict_read = predict_read[0]
            unique = unique[0]

            if FLAGS.extension == 'fastq':
                logits_prob = logits_prob[unique]
            if FLAGS.extension == 'fastq':
                qs_list = np.concatenate((qs_list, logits_prob))
            reads += predict_read
        val.pop(name)  # Release the memory
        basecall_time = time.time() - start_time
        bpreads = [index2base(read) for read in reads]
        js_ratio = FLAGS.jump / FLAGS.segment_len
        kernal = get_assembler_kernal(FLAGS.jump, FLAGS.segment_len)
        if FLAGS.extension == 'fastq':
            consensus, qs_consensus = simple_assembly_qs(bpreads,
                                                         qs_list,
                                                         js_ratio,
                                                         kernal=kernal)
            qs_string = qs(consensus, qs_consensus)
        else:
            consensus = simple_assembly(bpreads, js_ratio, kernal=kernal)
        c_bpread = index2base(np.argmax(consensus, axis=0))
        assembly_time = time.time() - start_time
        list_of_time = [start_time, reading_time, basecall_time, assembly_time]
        write_output(bpreads,
                     c_bpread,
                     list_of_time,
                     file_pre,
                     concise=FLAGS.concise,
                     suffix=FLAGS.extension,
                     q_score=qs_string,
                     global_setting=FLAGS)
    net.pbars.end()
Exemple #4
0
                if FLAGS.extension == 'fastq':
                    logits_prob = logits_prob[unique]
                if i + FLAGS.batch_size > reads_n:
                    predict_read = predict_read[:reads_n - i]
                    if FLAGS.extension == 'fastq':
                        logits_prob = logits_prob[:reads_n - i]
                if FLAGS.extension == 'fastq':
                    qs_list = np.concatenate((qs_list, logits_prob))
                reads += predict_read
            val.pop(name)  # Release the memory

            basecall_time = time.time() - start_time
            bpreads = [index2base(read) for read in reads]
            if FLAGS.extension == 'fastq':
                consensus, qs_consensus = simple_assembly_qs(bpreads, qs_list)
                qs_string = qs(consensus, qs_consensus)
            else:
                consensus = simple_assembly(bpreads)
            c_bpread = index2base(np.argmax(consensus, axis=0))
            assembly_time = time.time() - start_time
            list_of_time = [start_time, reading_time,
                            basecall_time, assembly_time]
            write_output(bpreads, c_bpread, list_of_time, file_pre, concise=FLAGS.concise, suffix=FLAGS.extension,
                         q_score=qs_string)
    pbars.end()


def decoding_queue(logits_queue, num_threads=6):
    q_logits, q_name, q_index, seq_length = logits_queue.dequeue()
    if FLAGS.extension == 'fastq':
Exemple #5
0
def evaluation():
    pbars = multi_pbars(["Logits(batches)","ctc(batches)","logits(files)","ctc(files)"])
    x = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, FLAGS.segment_len])
    seq_length = tf.placeholder(tf.int32, shape=[FLAGS.batch_size])
    training = tf.placeholder(tf.bool)
    config_path = os.path.join(FLAGS.model,'model.json')
    model_configure = chiron_model.read_config(config_path)

    logits, ratio = chiron_model.inference(
                                    x, 
                                    seq_length, 
                                    training=training,
                                    full_sequence_len = FLAGS.segment_len,
                                    configure = model_configure)
    config = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=FLAGS.threads,
                            inter_op_parallelism_threads=FLAGS.threads)
    config.gpu_options.allow_growth = True
    logits_index = tf.placeholder(tf.int32, shape=())
    logits_fname = tf.placeholder(tf.string, shape=())
    logits_queue = tf.FIFOQueue(
        capacity=1000,
        dtypes=[tf.float32, tf.string, tf.int32, tf.int32],
        shapes=[logits.shape,logits_fname.shape,logits_index.shape, seq_length.shape]
    )
    logits_queue_size = logits_queue.size()
    logits_enqueue = logits_queue.enqueue((logits, logits_fname, logits_index, seq_length))
    logits_queue_close = logits_queue.close()
    ### Decoding logits into bases
    decode_predict_op, decode_prob_op, decoded_fname_op, decode_idx_op, decode_queue_size = decoding_queue(logits_queue)
    saver = tf.train.Saver()
    with tf.train.MonitoredSession(session_creator=tf.train.ChiefSessionCreator(config=config)) as sess:
        saver.restore(sess, tf.train.latest_checkpoint(FLAGS.model))
        if os.path.isdir(FLAGS.input):
            file_list = os.listdir(FLAGS.input)
            file_dir = FLAGS.input
        else:
            file_list = [os.path.basename(FLAGS.input)]
            file_dir = os.path.abspath(
                os.path.join(FLAGS.input, os.path.pardir))
        file_n = len(file_list)
        pbars.update(2,total = file_n)
        pbars.update(3,total = file_n)
        if not os.path.exists(FLAGS.output):
            os.makedirs(FLAGS.output)
        if not os.path.exists(os.path.join(FLAGS.output, 'segments')):
            os.makedirs(os.path.join(FLAGS.output, 'segments'))
        if not os.path.exists(os.path.join(FLAGS.output, 'result')):
            os.makedirs(os.path.join(FLAGS.output, 'result'))
        if not os.path.exists(os.path.join(FLAGS.output, 'meta')):
            os.makedirs(os.path.join(FLAGS.output, 'meta'))
        def worker_fn():
            for f_i, name in enumerate(file_list):
                if not name.endswith('.signal'):
                    continue
                input_path = os.path.join(file_dir, name)
                eval_data = read_data_for_eval(input_path, FLAGS.start,
                                               seg_length=FLAGS.segment_len,
                                               step=FLAGS.jump)
                reads_n = eval_data.reads_n
                pbars.update(0,total = reads_n,progress = 0)
                pbars.update_bar()
                for i in range(0, reads_n, FLAGS.batch_size):
                    batch_x, seq_len, _ = eval_data.next_batch(
                        FLAGS.batch_size, shuffle=False, sig_norm=False)
                    batch_x = np.pad(
                        batch_x, ((0, FLAGS.batch_size - len(batch_x)), (0, 0)), mode='constant')
                    seq_len = np.pad(
                        seq_len, ((0, FLAGS.batch_size - len(seq_len))), mode='constant')
                    feed_dict = {
                        x: batch_x,
                        seq_length: np.round(seq_len/ratio).astype(np.int32),
                        training: False,
                        logits_index:i,
                        logits_fname: name,
                    }
                    sess.run(logits_enqueue,feed_dict=feed_dict)
                    pbars.update(0,progress=i+FLAGS.batch_size)
                    pbars.update_bar()
                pbars.update(2,progress = f_i+1)
                pbars.update_bar()
            sess.run(logits_queue_close)

        worker = threading.Thread(target=worker_fn,args=() )
        worker.setDaemon(True)
        worker.start()

        val = defaultdict(dict)  # We could read vals out of order, that's why it's a dict
        for f_i, name in enumerate(file_list):
            start_time = time.time()
            if not name.endswith('.signal'):
                continue
            file_pre = os.path.splitext(name)[0]
            input_path = os.path.join(file_dir, name)
            if FLAGS.mode == 'rna':
                eval_data = read_data_for_eval(input_path, FLAGS.start,
                                           seg_length=FLAGS.segment_len,
                                           step=FLAGS.jump)
            else:
                eval_data = read_data_for_eval(input_path, FLAGS.start,
                                           seg_length=FLAGS.segment_len,
                                           step=FLAGS.jump)
            reads_n = eval_data.reads_n
            pbars.update(1,total = reads_n,progress = 0)
            pbars.update_bar()
            reading_time = time.time() - start_time
            reads = list()

            N = len(range(0, reads_n, FLAGS.batch_size))
            while True:
                l_sz, d_sz = sess.run([logits_queue_size, decode_queue_size])
                decode_ops = [decoded_fname_op, decode_idx_op, decode_predict_op, decode_prob_op]
                decoded_fname, i, predict_val, logits_prob = sess.run(decode_ops, feed_dict={training: False})
                decoded_fname = decoded_fname.decode("UTF-8")
                val[decoded_fname][i] = (predict_val, logits_prob)               
                pbars.update(1,progress = len(val[name])*FLAGS.batch_size)
                pbars.update_bar()
                if len(val[name]) == N:
                    break

            pbars.update(3,progress = f_i+1)
            pbars.update_bar()
            qs_list = np.empty((0, 1), dtype=np.float)
            qs_string = None
            for i in range(0, reads_n, FLAGS.batch_size):
                predict_val, logits_prob = val[name][i]
                predict_read, unique = sparse2dense(predict_val)
                predict_read = predict_read[0]
                unique = unique[0]

                if FLAGS.extension == 'fastq':
                    logits_prob = logits_prob[unique]
                if i + FLAGS.batch_size > reads_n:
                    predict_read = predict_read[:reads_n - i]
                    if FLAGS.extension == 'fastq':
                        logits_prob = logits_prob[:reads_n - i]
                if FLAGS.extension == 'fastq':
                    qs_list = np.concatenate((qs_list, logits_prob))
                reads += predict_read
            val.pop(name)  # Release the memory

            basecall_time = time.time() - start_time
            bpreads = [index2base(read) for read in reads]
            js_ratio = FLAGS.jump/FLAGS.segment_len
            if FLAGS.extension == 'fastq':
                consensus, qs_consensus = simple_assembly_qs(bpreads, qs_list,js_ratio)
                qs_string = qs(consensus, qs_consensus)
            else:
                consensus = simple_assembly(bpreads,js_ratio)
            c_bpread = index2base(np.argmax(consensus, axis=0))
            assembly_time = time.time() - start_time
            list_of_time = [start_time, reading_time,
                            basecall_time, assembly_time]
            write_output(bpreads, c_bpread, list_of_time, file_pre, concise=FLAGS.concise, suffix=FLAGS.extension,
                         q_score=qs_string,global_setting=FLAGS)
    pbars.end()
Exemple #6
0
def evaluation():
    logger = logging.getLogger(__name__)
    x = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, FLAGS.segment_len])
    seq_length = tf.placeholder(tf.int32, shape=[FLAGS.batch_size])
    training = tf.placeholder(tf.bool)
    logits, ratio = chiron_model.inference(x,
                                           seq_length,
                                           training=training,
                                           full_sequence_len=FLAGS.segment_len)
    config = tf.ConfigProto(allow_soft_placement=True,
                            intra_op_parallelism_threads=FLAGS.threads,
                            inter_op_parallelism_threads=FLAGS.threads)
    config.gpu_options.allow_growth = True
    logits_index = tf.placeholder(tf.int32, shape=())
    logits_queue = tf.FIFOQueue(
        capacity=FLAGS.batch_size * 100,
        dtypes=[tf.float32, tf.int32, tf.int32],
        shapes=[logits.shape, logits_index.shape, seq_length.shape])
    logits_queue_size = logits_queue.size()
    logits_enqueue = logits_queue.enqueue((logits, logits_index, seq_length))

    ### Decoding logits into bases
    decode_predict_op, decode_prob_op, decode_idx_op, decode_queue_size = decoding_queue(
        logits_queue)
    saver = tf.train.Saver()
    with tf.train.MonitoredSession(
            session_creator=tf.train.ChiefSessionCreator(
                config=config)) as sess:
        saver.restore(sess, tf.train.latest_checkpoint(FLAGS.model))
        if os.path.isdir(FLAGS.input):
            file_list = os.listdir(FLAGS.input)
            file_dir = FLAGS.input
        else:
            file_list = [os.path.basename(FLAGS.input)]
            file_dir = os.path.abspath(
                os.path.join(FLAGS.input, os.path.pardir))

        if not os.path.exists(FLAGS.output):
            os.makedirs(FLAGS.output)
        if not os.path.exists(os.path.join(FLAGS.output, 'segments')):
            os.makedirs(os.path.join(FLAGS.output, 'segments'))
        if not os.path.exists(os.path.join(FLAGS.output, 'result')):
            os.makedirs(os.path.join(FLAGS.output, 'result'))
        if not os.path.exists(os.path.join(FLAGS.output, 'meta')):
            os.makedirs(os.path.join(FLAGS.output, 'meta'))

        for name in tqdm(file_list, desc="basecalling fast5s"):
            start_time = time.time()
            if not name.endswith('.signal'):
                continue
            file_pre = os.path.splitext(name)[0]
            input_path = os.path.join(file_dir, name)
            if FLAGS.mode == 'rna':
                eval_data = read_data_for_eval(input_path,
                                               FLAGS.start,
                                               seg_length=FLAGS.segment_len,
                                               step=FLAGS.jump,
                                               reverse=True)
            else:
                eval_data = read_data_for_eval(input_path,
                                               FLAGS.start,
                                               seg_length=FLAGS.segment_len,
                                               step=FLAGS.jump)
            reads_n = eval_data.reads_n
            reading_time = time.time() - start_time
            reads = list()

            N = len(range(0, reads_n, FLAGS.batch_size))
            i_logits = 0
            decoded_cnt = 0
            val = {}  # We could read vals out of order, that's why it's a dict
            with tqdm(total=reads_n, desc="signal processing") as pbar:
                while decoded_cnt < N:
                    l_sz, d_sz = sess.run(
                        [logits_queue_size, decode_queue_size])
                    # Flow control
                    # Either we have something beam decoded, or we've pushed all data into the queue
                    pbar.set_postfix(logits_q=l_sz, decoded_q=d_sz)
                    if d_sz > 0 or i_logits >= reads_n:
                        i, predict_val, logits_prob = sess.run(
                            [decode_idx_op, decode_predict_op, decode_prob_op],
                            feed_dict={training: False})
                        val[i] = (predict_val, logits_prob)
                        decoded_cnt += 1
                        pbar.update(
                            min(reads_n, decoded_cnt * FLAGS.batch_size) -
                            (decoded_cnt - 1) * FLAGS.batch_size)
                    else:
                        batch_x, seq_len, _ = eval_data.next_batch(
                            FLAGS.batch_size, shuffle=False, sig_norm=False)
                        batch_x = np.pad(batch_x,
                                         ((0, FLAGS.batch_size - len(batch_x)),
                                          (0, 0)),
                                         mode='constant')
                        seq_len = np.pad(
                            seq_len, ((0, FLAGS.batch_size - len(seq_len))),
                            mode='constant')
                        feed_dict = {
                            x: batch_x,
                            seq_length: seq_len / ratio,
                            training: False,
                            logits_index: i_logits
                        }
                        sess.run(logits_enqueue, feed_dict=feed_dict)
                        i_logits += FLAGS.batch_size

            qs_list = np.empty((0, 1), dtype=np.float)
            qs_string = None
            for i in trange(0,
                            reads_n,
                            FLAGS.batch_size,
                            desc="further decoding"):
                predict_val, logits_prob = val[i]
                predict_read, unique = sparse2dense(predict_val)
                predict_read = predict_read[0]
                unique = unique[0]

                if FLAGS.extension == 'fastq':
                    logits_prob = logits_prob[unique]
                if i + FLAGS.batch_size > reads_n:
                    predict_read = predict_read[:reads_n - i]
                    if FLAGS.extension == 'fastq':
                        logits_prob = logits_prob[:reads_n - i]
                if FLAGS.extension == 'fastq':
                    qs_list = np.concatenate((qs_list, logits_prob))
                reads += predict_read
            tqdm.write(
                "[%s] Segment reads base calling finished, begin to assembly. %5.2f seconds"
                % (name, time.time() - start_time))
            basecall_time = time.time() - start_time
            bpreads = [index2base(read) for read in reads]
            if FLAGS.extension == 'fastq':
                consensus, qs_consensus = simple_assembly_qs(bpreads, qs_list)
                qs_string = qs(consensus, qs_consensus)
            else:
                consensus = simple_assembly(bpreads)
            c_bpread = index2base(np.argmax(consensus, axis=0))
            np.set_printoptions(threshold=np.nan)
            assembly_time = time.time() - start_time
            tqdm.write("[%s] Assembly finished, begin output. %5.2f seconds" %
                       (name, time.time() - start_time))
            list_of_time = [
                start_time, reading_time, basecall_time, assembly_time
            ]
            write_output(bpreads,
                         c_bpread,
                         list_of_time,
                         file_pre,
                         concise=FLAGS.concise,
                         suffix=FLAGS.extension,
                         q_score=qs_string)
Exemple #7
0
def do_inference():
    """Tests PredictionService with concurrent requests.    
    Raises:
    IOError: An error occurred processing test data set.
    """
    if FLAGS.mode == 'dna':
        CONF = DNA_CONF()
    elif FLAGS.mode == 'rna':
        CONF = RNA_CONF()
    else:
        raise ValueError("Mode has to be either rna or dna.")
    make_dirs(FLAGS.output)
    FLAGS.segment_len = CONF.SEGMENT_LEN
    FLAGS.jump = CONF.JUMP
    FLAGS.start = CONF.START
    pbars = multi_pbars(["Request Submit:", "Request finished"])
    channel = grpc.insecure_channel(FLAGS.server)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
    request = predict_pb2.PredictRequest()
    request.model_spec.name = 'chiron'
    request.model_spec.signature_name = 'predicted_sequences'
    collector = _Result_Collection(concurrency=FLAGS.concurrency)
    file_list = gen_file_list(FLAGS.input)
    batch_iterator = data_iterator(file_list)

    def submit_fn():
        for batch_x, seq_len, i, f, N, reads_n in batch_iterator:
            seq_len = np.reshape(seq_len, (seq_len.shape[0], 1))
            combined_input = np.concatenate((batch_x, seq_len),
                                            axis=1).astype(np.float32)
            request.inputs['combined_inputs'].CopyFrom(
                tf.contrib.util.make_tensor_proto(
                    combined_input,
                    shape=[FLAGS.batch_size, CONF.SEGMENT_LEN + 1]))
            collector.throttle()
            result_future = stub.Predict.future(request, 100.0)  # 5 seconds
            result_future.add_done_callback(_post_process(collector, i, f, N))
            pbars.update(0, total=reads_n, progress=(i + 1) * FLAGS.batch_size)
            pbars.update_bar()

    submiter = threading.Thread(target=submit_fn, args=())
    submiter.setDaemon(True)
    submiter.start()
    pbars.update(1, total=len(file_list))
    pbars.update_bar()
    while not collector.all_done():
        if len(collector._done) > 0:
            qs_string = None
            f_p = collector._done[0]
            reads, probs = collector.pop_out(f_p)
            bpreads = [index2base(read) for read in reads]
            consensus, qs_consensus = simple_assembly_qs(bpreads, probs)
            qs_string = qs(consensus, qs_consensus)
            c_bpread = index2base(np.argmax(consensus, axis=0))
            file_pre = os.path.basename(os.path.splitext(f_p)[0])
            write_output(bpreads,
                         c_bpread, [np.NaN] * 4,
                         file_pre,
                         concise=FLAGS.concise,
                         suffix=FLAGS.extension,
                         q_score=qs_string,
                         global_setting=FLAGS)
            pbars.update(1, progress=pbars.progress[1] + 1)
            pbars.update_bar()