def test_returns_positions_three(self): self.assertEquals(chop(5, [1, 3, 5]), 2) self.assertEquals(chop(1, [1, 2, 3, 4, 5]), 0) self.assertEquals(chop(2, [1, 2, 3, 4, 5]), 1) self.assertEquals(chop(3, [1, 2, 3, 4, 5]), 2) self.assertEquals(chop(4, [1, 2, 3, 4, 5]), 3) self.assertEquals(chop(5, [1, 2, 3, 4, 5]), 4) self.assertEquals(chop(3, [1, 2, 3, 4, 5, 6]), 2) self.assertEquals(chop(5, [1, 2, 3, 4, 5, 6]), 4)
def digits(wild_image): import crop import chop import numpy as np cropped = crop.crop(wild_image) chopped = chop.chop(cropped) n_images = chopped.shape[0] flattened = np.reshape(n_images, -1) return flattened
def test_chop(self): self.assertEqual(-1, chop(3, [])) self.assertEqual(-1, chop(3, [1])) self.assertEqual(0, chop(1, [1])) self.assertEqual(0, chop(1, [1, 3, 5])) self.assertEqual(1, chop(3, [1, 3, 5])) self.assertEqual(2, chop(5, [1, 3, 5])) self.assertEqual(-1, chop(0, [1, 3, 5])) self.assertEqual(-1, chop(2, [1, 3, 5])) self.assertEqual(-1, chop(4, [1, 3, 5])) self.assertEqual(-1, chop(6, [1, 3, 5])) self.assertEqual(0, chop(1, [1, 3, 5, 7])) self.assertEqual(1, chop(3, [1, 3, 5, 7])) self.assertEqual(2, chop(5, [1, 3, 5, 7])) self.assertEqual(3, chop(7, [1, 3, 5, 7])) self.assertEqual(-1, chop(0, [1, 3, 5, 7])) self.assertEqual(-1, chop(2, [1, 3, 5, 7])) self.assertEqual(-1, chop(4, [1, 3, 5, 7])) self.assertEqual(-1, chop(6, [1, 3, 5, 7])) self.assertEqual(-1, chop(8, [1, 3, 5, 7]))
def test_returns_minus_one_when_not_single_element(self): self.assertEquals(chop(2, [3]), -1)
def test_returns_zero_when_only_number(self): self.assertEquals(chop(2,[2]),0)
def test_returns_minus_one_when_array_empty(self): self.assertEquals(chop(2,[]),-1)
def test_returns_positions_two(self): self.assertEquals(chop(3, [1, 3, 5]), 1)
def test_returns_positions_one(self): self.assertEquals(chop(1, [1, 3, 5]), 0)
def test_returns_position_when_prestn(self): self.assertEquals(chop(2, [1,2]), 1)
def test_returns_minus_one_when_not_present(self): self.assertEquals(chop(2, [1,3,4,5,5,5,5,5,56]), -1)
'word_freq_1999', 'word_freq_parts', 'word_freq_pm', 'word_freq_direct', 'word_freq_cs', 'word_freq_meeting', 'word_freq_original', 'word_freq_project', 'word_freq_re', 'word_freq_edu', 'word_freq_table', 'word_freq_conference', 'char_freq_semicolon', 'char_freq_(', 'char_freq_[', 'char_freq_!', 'char_freq_$', 'char_freq_#', 'capital_run_length_average', 'capital_run_length_longest', 'capital_run_length_total'] params['split_ratio'] = 0.7 params['delimiter_in'] = ',' params['delimiter_out'] = ',' params['history_steps'] = 0 params['history_column'] = '' params['predict_column'] = '' params['shuffle'] = True params['shuffleFirst'] = True chop(params)