def fastq_screen(exp): ''' Checks fastq files for contamination with alternative genomes using Bowtie2 ''' output( f'Screening for contamination during sequencing: {datetime.now():%Y-%m-%d %H:%M:%S}\n', log_file=exp.log_file, run_main=exp.run_main) # Make QC folder exp.qc_folder = make_folder(f'{exp.scratch}QC/') cwd = val_folder(os.getcwd()) os.chdir(exp.data_folder) samples = [ file for file in exp.sample_df.Scratch_File1.tolist() if is_fastq(file) ] # Submit fastqc and fastq_screen jobs for each sample for sample in samples: command_list = [ submission_prepend( f'fastq_screen --threads 4 --aligner bowtie2 {sample}') ] exp.job_id.append( send_job(command_list=command_list, job_name=f'{sample.split("/")[-1]}_fastq_screen', job_log_folder=exp.job_folder, q='general', mem=3000, log_file=exp.log_file, project=exp.project, cores=2, run_main=exp.run_main)) time.sleep(1) # Wait for jobs to finish job_wait(exp.job_id, exp.log_file) # move to qc folder fastqs_files = glob.glob(f'{exp.data_folder}*screen*') for f in fastqs_files: copy2(f, exp.qc_folder) os.remove(f) # change to experimental directory in scratch os.chdir(cwd) exp.tasks_complete.append('Fastq_screen') output(f'Screening complete: {datetime.now():%Y-%m-%d %H:%M:%S}\n', log_file=exp.log_file, run_main=exp.run_main) return exp
def fastqc(exp): ''' Performs fastq spec analysis with FastQC ''' output('Assessing fastq quality. \n', log_file=exp.log_file, run_main=exp.run_main) # Make QC folder exp.qc_folder = make_folder(f'{exp.scratch}QC/') all_samples = exp.sample_df.Scratch_File1.tolist( ) + exp.sample_df.Scratch_File2.tolist() samples = [file for file in all_samples if is_fastq(file)] for sample in samples: command_list = [submission_prepend(f'fastqc {sample}')] exp.job_id.append( send_job(command_list=command_list, job_name=f'{sample.split("/")[-1]}_fastqc', job_log_folder=exp.job_folder, q='general', mem=5000, log_file=exp.log_file, project=exp.project, run_main=exp.run_main)) # Wait for jobs to finish job_wait(exp.job_id, exp.log_file) # move to qc folder fastqc_files = glob.glob(f'{exp.data_folder}*.zip') fastqc_files = fastqc_files + glob.glob(f'{exp.data_folder}*.html') for f in fastqc_files: copy2(f, exp.qc_folder) os.remove(f) exp.tasks_complete.append('FastQC') output(f'FastQC complete: {datetime.now():%Y-%m-%d %H:%M:%S}\n', log_file=exp.log_file, run_main=exp.run_main) return exp
def trim(exp): ''' Trimming based on standard UM SCCC Core Nextseq 500 technical errors. Cudadapt can hard clip both ends, but may ignore 3' in future. ''' output(f'Beginning fastq trimming: {datetime.now():%Y-%m-%d %H:%M:%S}\n', log_file=exp.log_file, run_main=exp.run_main) for sample_dict in exp.sample_df[[ 'Scratch_File1', 'Scratch_File2', 'Sequencer', 'Sample_Name' ]].to_dict(orient='records'): quality = '--nextseq-trim=20' if sample_dict['Sequencer'].lower( ) == 'nextseq' else '-q 20' seq_type = 'single' if sample_dict[ 'Scratch_File2'] == 'none' else 'paired' sample = sample_dict["Sample_Name"] paired = f'{exp.data_folder}{sample}_trim_R2.fastq.gz' single = f'{exp.data_folder}{sample}_trim.fastq.gz' data_files = glob.glob(f'{exp.data_folder}*.gz') if (single in data_files) or (paired in data_files): continue else: output(f'Trimming {sample}: ', log_file=exp.log_file, run_main=exp.run_main) if seq_type == 'paired': cutadapt = f'cutadapt -j 4 -a AGATCGGAAGAGC -A AGATCGGAAGAGC --cores=10 {quality} -m 18 ' cutadapt += f'-o {exp.data_folder}{sample}_trim_R1.fastq.gz -p {exp.data_folder}{sample}_trim_R2.fastq.gz ' cutadapt += f'{sample_dict["Scratch_File1"]} {sample_dict["Scratch_File2"]}' elif seq_type == 'single': cutadapt = f'cutadapt -j 4 -a AGATCGGAAGAGC --cores=10 {quality} -m 18 ' cutadapt += f'-o {exp.data_folder}{sample}_trim_R1.fastq.gz {sample_dict["Scratch_File1"]}' command_list = [submission_prepend(cutadapt)] exp.job_id.append( send_job(command_list=command_list, job_name=f"{sample}_trim", job_log_folder=exp.job_folder, q='general', mem=5000, log_file=exp.log_file, project=exp.project, cores=2, run_main=exp.run_main)) # Wait for jobs to finish job_wait(exp.job_id, exp.log_file, exp.run_main) # move logs to qc folder output( '\nTrimming logs are found in stdout files from bsub. Cutadapt does not handle log files in multi-core mode.', log_file=exp.log_file, run_main=exp.run_main) exp.tasks_complete.append('Trim') output(f'Trimming complete: {datetime.now():%Y-%m-%d %H:%M:%S}\n', log_file=exp.log_file, run_main=exp.run_main) return exp
def spike(exp): ''' If calling from jupyter. Change backend as needed. Align sequencing files to drosophila. ''' import pandas as pd if len(exp.spike_samples) == 0: output('Not processing Spike-ins', log_file=exp.log_file, run_main=exp.run_main) exp.tasks_complete.append('Spike') return exp # Make QC folder spike_folder = make_folder(f'{exp.scratch}spike/') output('Processing samples with drosophila-spike in chromatin.', log_file=exp.log_file, run_main=exp.run_main) for sample in exp.spike_samples: bam = exp.sample_files[sample]['bam'] spike_command = [ submission_prepend(), f'samtools view -b -f 4 {bam} | samtools sort -n - | samtools fastq - > {spike_folder}{sample}.bwa_unaligned.fastq', f'bowtie2 -p 8 -x {exp.genome_indicies["spike_index"]} -U {spike_folder}{sample}.bwa_unaligned.fastq -S {spike_folder}{sample}.BDGP6.sam --very-sensitive-local -k 1 --no-unal', f'samtools view -b -F 4 {spike_folder}{sample}.BDGP6.sam | samtools sort - > {spike_folder}{sample}.BDGP6.bam', f'picard MarkDuplicates I={spike_folder}{sample}.BDGP6.bam O={spike_folder}{sample}.BDGP6.nodup.bam M={spike_folder}{sample}.BDGP6.nodups.markdups.qc ASSUME_SORTED=TRUE VALIDATION_STRINGENCY=LENIENT REMOVE_DUPLICATES=true', f'samtools flagstat {spike_folder}{sample}.BDGP6.nodup.bam > {spike_folder}{sample}.unique_drosophila.flagstat.qc', f'rm {spike_folder}{sample}.BDGP6.sam {spike_folder}{sample}.BDGP6.nodup.bam {spike_folder}{sample}*.fastq' ] exp.job_id.append( send_job(command_list=spike_command, job_name=f"{sample}_spike", job_log_folder=exp.job_folder, q='general', mem=10000, log_file=exp.log_file, project=exp.project, cores=2, run_main=exp.run_main)) # Wait for jobs to finish job_wait(exp.job_id, exp.log_file, exp.run_main) spike_reads = pd.DataFrame(index=['spike_reads', 'genome_reads']) for sample in exp.spike_samples: qc_file = f'{spike_folder}{sample}.unique_drosophila.flagstat.qc' exp.sample_files[sample]['drosophila'] = qc_file with open(qc_file, 'r') as fp: spike_number = fp.read().split(' ')[0] with open(exp.sample_files[sample]['nodup_flagstat']) as fp: target_number = fp.read().split(' ')[0] spike_reads[sample] = [spike_number, target_number] exp.spike_reads = spike_reads.T condition_dict = pd.Series(exp.sample_df.Condition.values, index=exp.sample_df.Sample_Name).to_dict() exp.spike_reads['Replicate'] = [ x.split('_')[-1] for x in exp.spike_reads.index.tolist() ] exp.spike_reads['Condition'] = [ condition_dict[x] for x in exp.splike_reads.index.tolist() ] for name, spike_conditions in exp.spike_comparisons.items(): out_dir = make_folder(f'{exp.scratch}spike/{name}') plot = spike_in_plot(exp.spike_reads, spike_conditions, name, out_dir) out_result(plot, f'{name.replace("_", " ")} Spike-In Comparison', run_main=exp.run_main) output( f'Spike-in comparison {name.replace("_", " ")} can be found here: {plot.replace(os.scratch, "")}' ) output(f'Spike-in counts:\n {spike_reads.T}', log_file=exp.log_file, run_main=exp.run_main) output('Spike-in alignment jobs finished.', log_file=exp.log_file, run_main=exp.run_main) # Generate one dataframe for all spike_counts output( f"Spike-in processing complete: {datetime.now():%Y-%m-%d %H:%M:%S}\n", log_file=exp.log_file, run_main=exp.run_main) exp.tasks_complete.append('Spike') return exp
def UMI(exp): # exp.data_type = 'bam' IPs = exp.IPs for experiment in IPs.Condition.unique().tolist(): UMI = True if 'yes' in IPs[IPs.Condition == experiment]['UMI'].tolist() else False if not UMI: return exp else: out_dir = make_folder(f'{exp.scratch}UMI/') output('Deduplicating bam files using UMIs with UMI-tools.', log_file=exp.log_file, run_main=exp.run_main) for index in IPs[IPs.Condition == experiment].index.tolist(): sample = IPs.loc[index, 'Sample_Name'] input_sample = IPs.loc[index, 'Background_Name'] bam = exp.sample_files[sample]['bam'] input_bam = exp.sample_files[input_sample]['bam'] nodup_bam = f'{out_dir}{sample}.UMI.dedup.bam' nodup_input = f'{out_dir}{input_sample}.UMI.dedup.bam' umi_string = 'umi_tools dedup --umi-separator=":" --output-stats={out_dir}{sample}deduplicated.qc -I {inbam} -S {outbam} -L {out_dir}{sample}.UMI.log' seq_type = False if 'none' in IPs[ IPs.Condition == experiment]['Scratch_File2'].tolist() else True if seq_type == 'paired': umi_string += ' --paired' command_list = [ submission_prepend(), f'samtools index {bam}', f'samtools index {input_bam}', umi_string.format(inbam=bam, outbam=nodup_bam, sample=sample, out_dir=out_dir), umi_string.format(inbam=input_bam, outbam=nodup_input, sample=input_sample, out_dir=out_dir) ] exp.job_id.append( send_job(command_list=command_list, job_name=f"{sample}_UMI_dedup", job_log_folder=exp.job_folder, q='bigmem', mem=40000, log_file=exp.log_file, project=exp.project, cores=1, run_main=exp.run_main)) exp.sample_files[sample]['nodup_bam'] = nodup_bam exp.sample_files[input_sample]['nodup_bam'] = nodup_input job_wait(exp.job_id, exp.log_file) output( 'Dedplication complete. Submitting deduplicated files for the remainder of processing.', log_file=exp.log_file, run_main=exp.run_main) exp.tasks_complete.append('UMI') return encode3(exp)
def encode3(exp): if 'Stage' not in exp.tasks_complete: output('Files not staged.\n', log_file=exp.log_file) exp = stage(exp) output('Running alignment and peak calling using ENCODE3 standards.', log_file=exp.log_file, run_main=exp.run_main) output('ENCODE3 cromwell pipeline.', log_file=exp.log_file, run_main=exp.run_main) out_dir = make_folder(f'{exp.scratch}ENCODE3/') IPs = exp.IPs end_types = {'q.gz': 'fastq', '.bam': 'bam'} for experiment in IPs.Condition.unique().tolist(): exp_dir = make_folder(f'{out_dir}{experiment}/') IP_sample_indicies = [(rep, index) for rep, index in enumerate( IPs[IPs.Condition == experiment].index.tolist(), start=1)] if len(IP_sample_indicies) > 6: raise IOError('Pipeline cannot handle more than 6 replicates.') seq_type = False if 'none' in IPs[ IPs.Condition == experiment]['File2'].tolist() else True final_stage = 'align' if 'align' in IPs[ IPs.Condition == experiment]['Final Stage'].tolist() else 'all' UMI_list = [ x.lower() for x in IPs[IPs.Condition == experiment]['UMI'].unique().tolist() ] if len(set(UMI_list)) > 1: raise IOError( 'All samples must be UMI processed or not for each condition.') UMI = True if UMI_list[0].lower() == 'yes' else False try: file_type = end_types[exp.sample_df[exp.sample_df.Condition == experiment] ['Scratch_File1'].tolist()[0][-4:]] except KeyError: output( f"{exp.sample_df[exp.sample_df.Condition == experiment]['Scratch_File1'].tolist()[0]} not a valid file type for this pipeline.", log_file=exp.log_file, run_main=exp.run_main) genome = IPs[IPs.Condition == experiment]['Genome'].unique().tolist() if len(genome) > 1: raise IOError( 'Cannot align to more than one genome per condition.') chip_type = IPs[IPs.Condition == experiment]['ChIP Type'].unique().tolist() if len(chip_type) > 1: raise IOError( 'Cannot have more than one chip type (histone or TF) for a condition.' ) chip_type = 'histone' if chip_type[0].lower() == 'histone' else 'tf' json_file = { 'chip.pipeline_type': chip_type, 'chip.paired_end': seq_type, 'chip.genome_tsv': exp.genome_indicies['encode_tsv'][genome[0]], 'chip.bwa.mem_mb': 30000, 'chip.macs2_mem_mb': 30000, 'chip.peak_caller': 'macs2', "chip.true_rep_only": False, "chip.dup_marker": "picard", "chip.mapq_thresh": 30, "chip.regex_filter_reads": "chrM", "chip.subsample_reads": 0, "chip.ctl_subsample_reads": 0, "chip.xcor_subsample_reads": 15000000, "chip.keep_irregular_chr_in_bfilt_peak": False, "chip.always_use_pooled_ctl": False, "chip.ctl_depth_ratio": 1.2, "chip.macs2_cap_num_peak": 500000, "chip.pval_thresh": 0.01, "chip.idr_thresh": 0.05, "chip.bwa_cpu": 4, "chip.bwa_mem_mb": 20000, "chip.bwa_time_hr": 48, "chip.filter_cpu": 2, "chip.filter_mem_mb": 20000, "chip.filter_time_hr": 24, "chip.bam2ta_cpu": 2, "chip.bam2ta_mem_mb": 10000, "chip.bam2ta_time_hr": 6, "chip.fingerprint_cpu": 2, "chip.fingerprint_mem_mb": 12000, "chip.fingerprint_time_hr": 6, "chip.xcor_cpu": 2, "chip.xcor_mem_mb": 16000, "chip.xcor_time_hr": 24, "chip.macs2_time_hr": 24, "chip.spr_mem_mb": 16000 } bams = [] ctl_bams = [] for rep, index in IP_sample_indicies: sample = exp.sample_df.loc[index, 'Sample_Name'] input_sample = IPs.loc[index, 'Background_Name'] if file_type == 'fastq': json_file[f'chip.fastqs_rep{rep}_R1'] = [ f'{exp.data_folder}{sample}_trim_R1.fastq.gz' ] json_file[f'chip.ctl_fastqs_rep{rep}_R1'] = [ f'{exp.data_folder}{input_sample}_trim_R1.fastq.gz' ] if seq_type: json_file[f'chip.fastqs_rep{rep}_R2'] = [ f'{exp.data_folder}{sample}_trim_R2.fastq.gz' ] json_file[f'chip.ctl_fastqs_rep{rep}_R2'] = [ f'{exp.data_folder}{input_sample}_trim_R2.fastq.gz' ] else: bams.append(f'{exp.data_folder}{sample}.bam') ctl_bams.append(f'{exp.data_folder}{input_sample}.bam') if file_type == 'bam': json_file[f'chip.bams'] = bams json_file[f'chip.ctl_bams'] = ctl_bams json_file['chip.align_only'] = True if UMI & (file_type == 'fastq') else False json_file[ 'chip.align_only'] = True if final_stage == 'align' else False json_file['chip.no_dup_removal'] = True if UMI else False json_file['chip.title'] = f'{experiment}_postUMI_dedup' if UMI & ( file_type == 'bam') else experiment json_file[ "chip.description"] = f"Cromwell ENCODE3 {experiment}: {'paired-end' if seq_type else 'single-end'} {chip_type}." encode_file = f'{exp_dir}{experiment}_ENCODE3.json' with open(encode_file, 'w') as file: json.dump(json_file, file, indent=4, sort_keys=True) pythonpath = shutil.which('python') miniconda = [x for x in pythonpath.split('/') if 'miniconda' in x] cromwell_jar = re.sub( r'{}/.*'.format(miniconda), '{}/envs/chrome_chip/share/cromwell/cromwell.jar'.format( miniconda), pythonpath) jar = cromwell_jar if os.path.isfile( cromwell_jar ) else '~/miniconda3/envs/chrome_chip/share/cromwell/cromwell.jar' command_list = [ submission_prepend(source='encode-chip-seq-pipeline'), f'cd {exp_dir}', f'java -jar -Dconfig.file={exp.encode3_folder}backends/backend.conf -Dbackend.default=Local {jar} run {exp.encode3_folder}chip.wdl -i {encode_file}' ] sent_job = send_job(command_list=command_list, job_name=f"{experiment}_ENCODE3", job_log_folder=exp.job_folder, q='bigmem', mem=35000, log_file=exp.log_file, project=exp.project, cores=1, run_main=exp.run_main) exp.job_id.append(sent_job) job_pending(sent_job, exp.log_file) # Wait for jobs to finish job_wait(exp.job_id, exp.log_file) exp = encode_results(exp) exp.tasks_complete.append('ENCODE3') return exp
def encode3(exp): if 'Stage' not in exp.tasks_complete: output('Files not staged.\n', log_file=exp.log_file) exp = stage(exp) output('Running alignment and peak calling using ENCODE3 standards.', log_file=exp.log_file, run_main=exp.run_main) output('ENCODE3 cromwell pipeline.', log_file=exp.log_file, run_main=exp.run_main) out_dir = make_folder(f'{exp.scratch}ENCODE3/') IPs = exp.IPs end_types = {'q.gz': 'fastq', '.bam': 'bam'} for experiment in IPs.Condition.unique().tolist(): exp_dir = make_folder(f'{out_dir}{experiment}/') IP_sample_indicies = [(rep, index) for rep, index in enumerate( IPs[IPs.Condition == experiment].index.tolist(), start=1)] if len(IP_sample_indicies) > 6: raise IOError('Pipeline cannot handle more than 6 replicates.') seq_type = False if 'none' in IPs[ IPs.Condition == experiment]['File2'].tolist() else True aligner = IPs[IPs.Condition == experiment]['Aligner'].unique().tolist() if len(aligner) != 1: raise IOError( 'All replicates must be aligned using the same aligner or not, which must be specified.' ) else: aligner = aligner[0] peak_caller = IPs[IPs.Condition == experiment]['Peak Caller'].unique().tolist() if len(peak_caller) != 1: raise IOError( 'All replicates peaks must be called or not using the same peak calling strategy.' ) else: peak_caller = peak_caller[0] UMI_list = [ x.lower() for x in IPs[IPs.Condition == experiment]['UMI'].unique().tolist() ] if len(set(UMI_list)) > 1: raise IOError( 'All samples must be UMI processed or not for each condition.') UMI = True if UMI_list[0] == 'yes' else False try: file_type = end_types[exp.sample_df[exp.sample_df.Condition == experiment] ['Scratch_File1'].tolist()[0][-4:]] except KeyError: output( f"{exp.sample_df[exp.sample_df.Condition == experiment]['Scratch_File1'].tolist()[0]} not a valid file type for this pipeline.", log_file=exp.log_file, run_main=exp.run_main) file_type = 'bam' if (UMI is True) & ( 'UMI' in exp.tasks_complete) else file_type genome = IPs[IPs.Condition == experiment]['Genome'].unique().tolist() if len(genome) > 1: raise IOError( 'Cannot align to more than one genome per condition.') chip_type = IPs[IPs.Condition == experiment]['ChIP Type'].unique().tolist() if len(chip_type) > 1: raise IOError( 'Cannot have more than one chip type (histone or TF) for a condition.' ) chip_type = 'histone' if chip_type[0].lower() == 'histone' else 'tf' json_file = { 'chip.pipeline_type': chip_type, 'chip.paired_end': seq_type, 'chip.genome_tsv': exp.genome_indicies['encode_tsv'][genome[0]], 'chip.align_mem_mb': 30000, "chip.true_rep_only": False, "chip.dup_marker": "picard", "chip.mapq_thresh": 30, "chip.filter_chrs": ["chrM"], "chip.subsample_reads": 0, "chip.ctl_subsample_reads": 0, "chip.xcor_subsample_reads": 15000000, "chip.always_use_pooled_ctl": False, "chip.ctl_depth_ratio": 1.2, "chip.cap_num_peak_macs2": 500000, "chip.pval_thresh": 0.01, "chip.idr_thresh": 0.05, "chip.align_cpu": 4, "chip.align_time_hr": 48, "chip.filter_cpu": 2, "chip.filter_mem_mb": 20000, "chip.filter_time_hr": 24, "chip.bam2ta_cpu": 2, "chip.bam2ta_mem_mb": 10000, "chip.bam2ta_time_hr": 6, "chip.jsd_cpu": 2, "chip.jsd_mem_mb": 12000, "chip.jsd_time_hr": 6, "chip.xcor_cpu": 2, "chip.xcor_mem_mb": 16000, "chip.xcor_time_hr": 24, "chip.align_time_hr": 24, "chip.spr_mem_mb": 16000, "chip.enable_count_signal_track": True, } if peak_caller == 'macs2': json_file['chip.peak_caller'] = 'macs2' if aligner != 'none': json_file['chip.aligner'] = aligner bams = [] ctl_bams = [] for rep, index in IP_sample_indicies: sample = exp.sample_df.loc[index, 'Sample_Name'] input_sample = IPs.loc[index, 'Background_Name'] if file_type == 'fastq': json_file[f'chip.fastqs_rep{rep}_R1'] = [ f'{exp.data_folder}{sample}_trim_R1.fastq.gz' ] json_file[f'chip.ctl_fastqs_rep{rep}_R1'] = [ f'{exp.data_folder}{input_sample}_trim_R1.fastq.gz' ] if seq_type: json_file[f'chip.fastqs_rep{rep}_R2'] = [ f'{exp.data_folder}{sample}_trim_R2.fastq.gz' ] json_file[f'chip.ctl_fastqs_rep{rep}_R2'] = [ f'{exp.data_folder}{input_sample}_trim_R2.fastq.gz' ] else: bams.append(f'{exp.data_folder}{sample}.bam') ctl_bams.append(f'{exp.data_folder}{input_sample}.bam') if file_type == 'bam': json_file[f'chip.bams'] = bams json_file[f'chip.ctl_bams'] = ctl_bams json_file['chip.align_only'] = True if UMI & (file_type == 'fastq') else False json_file[ 'chip.align_only'] = True if peak_caller == 'none' else json_file[ 'chip.align_only'] json_file['chip.no_dup_removal'] = True if UMI else False json_file['chip.title'] = f'{experiment}_postUMI_dedup' if UMI & ( file_type == 'bam') else experiment json_file[ "chip.description"] = f"Cromwell ENCODE3 {experiment}: {'paired-end' if seq_type else 'single-end'} {chip_type}." encode_file = f'{exp_dir}{experiment}_ENCODE3.json' with open(encode_file, 'w') as file: json.dump(json_file, file, indent=4, sort_keys=True) pythonpath = shutil.which('python') miniconda = [x for x in pythonpath.split('/') if 'miniconda' in x] cromwell_jar = re.sub( r'{}/.*'.format(miniconda), '{}/envs/chrome_chip/share/cromwell/cromwell.jar'.format( miniconda), pythonpath) jar = cromwell_jar if os.path.isfile( cromwell_jar ) else '~/miniconda3/envs/chrome_chip/share/cromwell/cromwell.jar' command_list = [ submission_prepend(source='encode-chip-seq-pipeline'), f'cd {exp_dir}', f'java -jar -Dconfig.file={exp.encode3_folder}backends/backend.conf -Dbackend.default=Local {jar} run {exp.encode3_folder}chip.wdl -i {encode_file}' ] sent_job = send_job(command_list=command_list, job_name=f"{experiment}_ENCODE3", job_log_folder=exp.job_folder, q='bigmem', mem=35000, log_file=exp.log_file, project=exp.project, cores=1, run_main=exp.run_main) exp.job_id.append(sent_job) job_pending(sent_job, exp.log_file) # Wait for jobs to finish job_wait(exp.job_id, exp.log_file) # Check fraglength and resubmit with set 200 fraglen for macs2 if xcor error for experiment in exp.IPs.Condition.unique().tolist(): rep_number = len(exp.IPs[exp.IPs.Condition == experiment]) frag_list = [] for rep in range(rep_number): file = glob_check( f'{exp.scratch}ENCODE3/{experiment}/cromwell-executions/chip/*/call-xcor/shard-{rep}/execution/*fraglen.txt' ) with open(file, 'r') as f: frag_list.append(f.read().split()[0]) if '-' in [x[0] for x in frag_list]: output( f'Xcor failed for {experiment}. Resubmitting with fragment length set to 200 for failed sample/s', log_file=exp.log_file, run_main=exp.run_main) frag_list = [x if x[0] != '-' else '200' for x in frag_list] exp_dir = f'{exp.scratch}ENCODE3/{experiment}/' encode_file = f'{exp_dir}{experiment}_ENCODE3.json' with open(encode_file, 'r') as file: json_file = json.load(file) json_file["chip.fraglen"] = frag_list resubmit_file = f'{exp_dir}/{experiment}_ENCODE3_setfraglenth.json' with open(resubmit_file, 'w') as file: json.dump(json_file, file, indent=4, sort_keys=True) pythonpath = shutil.which('python') miniconda = [x for x in pythonpath.split('/') if 'miniconda' in x] cromwell_jar = re.sub( r'{}/.*'.format(miniconda), '{}/envs/chrome_chip/share/cromwell/cromwell.jar'.format( miniconda), pythonpath) jar = cromwell_jar if os.path.isfile( cromwell_jar ) else '~/miniconda3/envs/chrome_chip/share/cromwell/cromwell.jar' command_list = [ submission_prepend(source='encode-chip-seq-pipeline'), f'cd {exp_dir}', f'java -jar -Dconfig.file={exp.encode3_folder}backends/backend.conf -Dbackend.default=Local {jar} run {exp.encode3_folder}chip.wdl -i {resubmit_file}' ] sent_job = send_job(command_list=command_list, job_name=f"{experiment}_ENCODE3_resubmission", job_log_folder=exp.job_folder, q='bigmem', mem=35000, log_file=exp.log_file, project=exp.project, cores=1, run_main=exp.run_main) exp.job_id.append(sent_job) job_pending(sent_job, exp.log_file) # Wait for jobs to finish job_wait(exp.job_id, exp.log_file) exp = encode_results(exp) exp.tasks_complete.append('ENCODE3') return exp