# seed args.cuda = torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) # data loader and model assert args.type in ['cifar10', 'cifar100'], args.type train_loader, test_loader = dataset.get10(batch_size=args.batch_size, num_workers=1) model = model.cifar10(args=args, logger=logger) if args.cuda: model.cuda() optimizer = optim.SGD(model.parameters(), lr=1) decreasing_lr = list(map(int, args.decreasing_lr.split(','))) logger('decreasing_lr: ' + str(decreasing_lr)) best_acc, old_file = 0, None t_begin = time.time() grad_scale = args.grad_scale try: # ready to go for epoch in range(args.epochs): model.train() if epoch in decreasing_lr: grad_scale = grad_scale / 8.0
# seed args.cuda = torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) # data loader and model assert args.type in ['cifar10', 'cifar100'], args.type train_loader, test_loader = dataset.get10(batch_size=args.batch_size, num_workers=1) model = model.cifar10(args=args, logger=logger) if args.cuda: model.cuda() optimizer = optim.SGD(model.parameters(), lr=1) decreasing_lr = list(map(int, args.decreasing_lr.split(','))) logger('decreasing_lr: ' + str(decreasing_lr)) best_acc, old_file = 0, None t_begin = time.time() grad_scale = args.grad_scale try: # ready to go if args.cellBit != args.wl_weight: print( "Warning: Weight precision should be the same as the cell precison !" ) # add d2dVari paramALTP = {}