correct_pred = tf.equal(tf.argmax(model, 1), tf.argmax(outputs, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

cifar = Cifar(batch_size=batch_size)
cifar.create_resized_test_set(dim=n_classes)

init = tf.initialize_all_variables()
with tf.Session() as sess:
    sess.run(init)
    run_options = tf.RunOptions(report_tensor_allocations_upon_oom=True)

    for epoch in range(no_of_epochs):
        for i in tqdm(range(cifar.no_of_batches),
                      desc="Epoch {}".format(epoch),
                      unit=" batch "):
            this_batch = cifar.batch(i)
            input_batch, out = helper.reshape_batch(this_batch,
                                                    (image_size, image_size),
                                                    n_classes)

            sess.run([optimizer],
                     feed_dict={
                         pretrained.x: input_batch,
                         outputs: out
                     },
                     options=run_options)

        acc, loss = sess.run([accuracy, cost],
                             feed_dict={
                                 pretrained.x: input_batch,
                                 outputs: out
Exemple #2
0
#outputs = tf.placeholder(tf.float32, [None, n_classes])

# ====================
# config dataset
# ====================
print('Prepare dataset')
train_dataset = Cifar(batch_size = batch_size)

init = tf.initialize_all_variables()

trian_features = None
train_label = None
with tf.Session(config=config) as sess:
    sess.run(init)
    for i in tqdm(range(20), unit=" batch "):
        this_batch = train_dataset.batch(i)
        train_X, train_y = helper.reshape_batch(this_batch, (image_size, image_size), n_classes)
        train_y = [np.argmax(element) for element in train_y]
        features = sess.run(
            [extractor],
            feed_dict={
                model.input_images: train_X 
            })
        if trian_features is None:
            trian_features = features[0]
            train_label = train_y
        else:
            trian_features = np.concatenate((trian_features, features[0]), axis=0)
            train_label += train_y