Exemple #1
0
	def compute_players(self):
		
		self.measure_players()
		simulator = Simulator()
		for player in self.players:
			result = ''
			if player.next_qubit1 != 0 or player.next_qubit2 != 0:
				result = simulator.run(player.circuit)
			res = str(result)
			bits1 = ''
			bits2 = ''
			bit = ''
			for i in range(len(res)):
				if res[i] == '=':
					bit = bit + str(res[i + 1])

			if player.next_qubit1 > 0:
				bits1 = bit[:player.next_qubit1]
			if player.next_qubit2 > 0:
				bits2 = bit[player.next_qubit1:]

		if len(player.card1) > 1:
			player.card1 = [player.card1.pop(int(bits1, 2))]

		if len(player.card2) > 1:
			player.card2 = [player.card2.pop(int(bits2, 2))]
Exemple #2
0
def find_y(N,
           a,
           q,
           reps=5
           ):  # Uses the order finding algorithm to give possible values for y

    simulator = Simulator()  # Sets up simulator
    circuit = cirq.Circuit()

    number_qubits = q  # Sets up all qubits to be used.
    m_qubits = [cirq.GridQubit(i, 0) for i in range(2 * number_qubits)]
    x_qubits = [
        cirq.GridQubit(i, 0)
        for i in range(2 * number_qubits, 3 * number_qubits)
    ]
    b_qubits = [
        cirq.GridQubit(i, 0)
        for i in range(3 * number_qubits, 4 * number_qubits + 1)
    ]
    zero_qubit = cirq.GridQubit(4 * number_qubits + 1, 0)
    print('Number of qubits: {}'.format(4 * number_qubits + 5))

    circuit.append(order_find(a, N, b_qubits, x_qubits, zero_qubit, m_qubits),
                   strategy=InsertStrategy.NEW)  # Runs the simulation.

    return simulator.run(circuit, repetitions=reps).histogram(
        key='q')  # Returns a dictionary of the measurment results.
Exemple #3
0
    sqrt_x = cirq.X**0.5
    yield sqrt_x(q0), sqrt_x(q1)
    yield cirq.CZ(q0, q1)
    yield sqrt_x(q0), sqrt_x(q1)
    if meas:
        yield cirq.measure(q0, key='q0'), cirq.measure(q1, key='q1')


circuit = cirq.Circuit()
circuit.append(basic_circuit())

print(circuit)

from cirq import Simulator
simq = Simulator()
result = simq.run(circuit)

print(result)

#Ciruit Stepping

circuit = cirq.Circuit()
circuit.append(basic_circuit())
for i, step in enumerate(simq.simulate_moment_steps(circuit)):
    print('state at step %d: %s' % (i, np.around(step.state_vector(), 3)))

#monte carlo noise
q = cirq.NamedQubit('a')
circuit = cirq.Circuit.from_ops(cirq.bit_flip(p=0.2)(q),
                                cirq.measure(q))  #PauliXGate
simq = cirq.Simulator()
Exemple #4
0
q1 = cirq.GridQubit(1, 0)


def basic_circuit(meas=True):
    sqrt_x = cirq.X**0.5
    yield sqrt_x(q0), sqrt_x(q1)
    yield cirq.CZ(q0, q1)
    yield sqrt_x(q0), sqrt_x(q1)
    if meas:
        yield cirq.measure(q0, key='q0'), cirq.measure(q1, key='q1')


circuit = cirq.Circuit()
circuit.append(basic_circuit())

print(circuit)

simulator = Simulator()
result = simulator.run(circuit)

print(result)

# Circuit :
# (0, 0): ───X^0.5───@───X^0.5───M('q0')───
#                    │
# (1, 0): ───X^0.5───@───X^0.5───M('q1')───

# Result
# q0=0
# q1=1
Exemple #5
0
            for _ in range(number_of_iterations):
                circuit.append(oracle)
                circuit.append(self.diffusion)
            return circuit

def make_oracle(qubits):
    circuit = cirq.Circuit()
    controllee= []
    for i in range(length - 1):
        controllee.append(qubits[i])
    circuit.append(cirq.X(qubits[i]) for i in [1,3,4])
    circuit.append(cirq.control(cirq.Z, controllee)(qubits[-1]))
    circuit.append(cirq.X(qubits[i]) for i in [1,3,4])
    return circuit


grover = Grover(qubits)
oracle = make_oracle(qubits)
circuit = cirq.Circuit()
circuit.append(cirq.H(q) for q in qubits)
grover.run(circuit, oracle, number_of_expected_results)
circuit.append(cirq.measure(*qubits))

print(circuit)

from cirq import Simulator
simulator = Simulator()
result = simulator.run(circuit, repetitions=int(sys.argv[2]))

print(result)
Exemple #6
0
def basic_circuit(m=True):
    sqrt_x = cirq.X**0.5
    yield sqrt_x(q0), sqrt_x(q1)
    yield cirq.CZ(q0, q1)
    yield sqrt_x(q0), sqrt_x(q1)
    if (m):
        yield cirq.measure(q0, key='alpha'), cirq.measure(q1, key='beta')


circuit = cirq.Circuit()
circuit.append(basic_circuit())
print(circuit)

# run the simulator
sim = Simulator()
res = sim.run(circuit)
print(res)


def main():
    qft_circuit = generate_2x2_grid()
    print("circuit:")
    print(qft_circuit)
    sim = Simulator()
    res = sim.simulate(qft_circuit)
    print('\nfinal state:')
    print(np.around(res.final_state, 3))


def cz_swap(q0, q1, rot):
    yield cirq.CZ(q0, q1)**rot
Exemple #7
0

n = 4
length = n + 1
num_reps = 200

a, subset = choose_subset(n)
circuit = cirq.Circuit()

b = np.random.randint(0, high=2, size=n)
l_z = subset_parity(subset, b, n)

print(a, b)

qubits = [cirq.GridQubit(i, 0) for i in range(length - 1)]
readout = cirq.GridQubit(length - 1, 0)
circuit.append([prepare_initial_state(b, qubits, n)])
circuit.append([cirq.Rx(-np.pi / 2)(readout)])

for i in range(n):
    cX = cirq.ControlledGate(cirq.Rx(-np.pi * a[i]))
    circuit.append([cX(qubits[i], readout)])

circuit.append([measure_Y(readout), cirq.measure(readout, key='demo')])
print(circuit)

results = simulator.run(circuit, repetitions=num_reps)
estimate = compute_est(results.histogram, num_reps, 'demo')

print("computed Value of function", estimate)