def test_qubitop_to_paulisum_more_terms(self):
        # Given
        qubit_operator = (
            QubitOperator("Z0 Z1 Z2", -1.5)
            + QubitOperator("X0", 2.5)
            + QubitOperator("Y1", 3.5)
        )
        expected_qubits = (LineQubit(0), LineQubit(5), LineQubit(8))
        expected_paulisum = (
            PauliSum()
            + (
                PauliString(Z.on(expected_qubits[0]))
                * PauliString(Z.on(expected_qubits[1]))
                * PauliString(Z.on(expected_qubits[2]))
                * -1.5
            )
            + (PauliString(X.on(expected_qubits[0]) * 2.5))
            + (PauliString(Y.on(expected_qubits[1]) * 3.5))
        )

        # When
        paulisum = qubitop_to_paulisum(qubit_operator, qubits=expected_qubits)

        # Then
        self.assertEqual(paulisum.qubits, expected_qubits)
        self.assertEqual(paulisum, expected_paulisum)
Exemple #2
0
def test_simple_pauli_deco_dict_CNOT():
    """Tests that the _simple_pauli_deco_dict function returns a decomposition
    dicitonary which is consistent with a local depolarizing noise model.

    The channel acting on the state each qubit is assumed to be:
    D(rho) = = (1 - epsilon) rho + epsilon I/2
    = (1 - p) rho + p/3 (X rho X + Y rho Y^dag + Z rho Z)
    """

    # Deduce epsilon from BASE_NOISE
    epsilon = BASE_NOISE * 4.0 / 3.0
    c_neg = -(1 / 4) * epsilon / (1 - epsilon)
    c_pos = 1 - 3 * c_neg
    qreg = LineQubit.range(2)

    # Get the decomposition of a CNOT gate
    deco = DECO_DICT[CNOT.on(*qreg)]

    # The first term of 'deco' corresponds to no error occurring
    first_coefficient, first_imp_seq = deco[0]
    assert np.isclose(c_pos * c_pos, first_coefficient)
    assert first_imp_seq == [CNOT.on(*qreg)]
    # The second term corresponds to a Pauli X error on one qubit
    second_coefficient, second_imp_seq = deco[1]
    assert np.isclose(c_pos * c_neg, second_coefficient)
    assert second_imp_seq == [CNOT.on(*qreg), X.on(qreg[0])]
    # The last term corresponds to two Pauli Z errors on both qubits
    last_coefficient, last_imp_seq = deco[-1]
    assert np.isclose(c_neg * c_neg, last_coefficient)
    assert last_imp_seq == [CNOT.on(*qreg), Z.on(qreg[0]), Z.on(qreg[1])]
Exemple #3
0
def test_get_imp_sequences_no_simplify(gate: Gate):
    q = LineQubit(0)
    expected_imp_sequences = [
        [gate.on(q)],
        [gate.on(q), X.on(q)],
        [gate.on(q), Y.on(q)],
        [gate.on(q), Z.on(q)],
    ]
    assert get_imp_sequences(gate.on(q), DECO_DICT) == expected_imp_sequences
Exemple #4
0
def test_sample_circuit_with_seed():
    decomp = _simple_pauli_deco_dict(0.7, simplify_paulis=True)
    circ = Circuit([X.on(LineQubit(0)) for _ in range(10)])

    expected = sample_circuit(circ, decomp, random_state=4)[0]

    # Check we're not sampling the same operation every call to sample_sequence
    assert len(set(expected.all_operations())) > 1

    for _ in range(10):
        sampled = sample_circuit(circ, decomp, random_state=4)[0]
        assert _equal(sampled, expected)
Exemple #5
0
def test_simple_pauli_deco_dict_single_qubit(gate: Gate):
    """Tests that the _simple_pauli_deco_dict function returns a decomposition
    dicitonary which is consistent with a local depolarizing noise model.

    This is similar to test_simple_pauli_deco_dict_CNOT but applied to
    single-qubit gates.
    """
    epsilon = BASE_NOISE * 4.0 / 3.0
    c_neg = -(1 / 4) * epsilon / (1 - epsilon)
    c_pos = 1 - 3 * c_neg
    qreg = LineQubit.range(2)
    for q in qreg:
        deco = DECO_DICT[gate.on(q)]
        first_coefficient, first_imp_seq = deco[0]
        assert np.isclose(c_pos, first_coefficient)
        assert first_imp_seq == [gate.on(q)]
        second_coefficient, second_imp_seq = deco[1]
        assert np.isclose(c_neg, second_coefficient)
        assert second_imp_seq == [gate.on(q), X.on(q)]
Exemple #6
0
def qubit_op_to_gate(operation: 'QubitOperator',
                     qubit) -> 'SingleQubitPauliStringGateOperation':
    """Convert a qubit operation into a gate operations that can be digested
    by a Cirq simulator.

    Args:
        operation (QubitOperator)
        qubit (Qid) - a qubit on which the Pauli matrices will act.

    Returns:
        (gate) - a gate that can be executed on the qubit passed
    """
    if operation == 'X':
        return X.on(qubit)
    if operation == 'Y':
        return Y.on(qubit)
    if operation == 'Z':
        return Z.on(qubit)
    raise ValueError('No gate identified in qubit_op_to_gate')
Exemple #7
0
    _simple_pauli_deco_dict,
    DecompositionDict,
    _operation_to_choi,
    _circuit_to_choi,
)
from mitiq.pec.sampling import sample_sequence, sample_circuit

BASE_NOISE = 0.02
DECO_DICT = _simple_pauli_deco_dict(BASE_NOISE)
DECO_DICT_SIMP = _simple_pauli_deco_dict(BASE_NOISE, simplify_paulis=True)
NOISELESS_DECO_DICT = _simple_pauli_deco_dict(0)

# Simple 2-qubit circuit
qreg = LineQubit.range(2)
twoq_circ = Circuit(
    X.on(qreg[0]),
    CNOT.on(*qreg),
)


@pytest.mark.parametrize("gate", [X, Y, Z, CNOT])
def test_sample_sequence_types(gate: Gate):
    num_qubits = gate.num_qubits()
    qreg = LineQubit.range(num_qubits)
    for _ in range(1000):
        imp_seq, sign, norm = sample_sequence(gate.on(*qreg), DECO_DICT)
        assert all([isinstance(op, Operation) for op in imp_seq])
        assert sign in {1, -1}
        assert norm > 1

Exemple #8
0
def _simple_pauli_deco_dict(base_noise: float,
                            simplify_paulis: bool = False
                            ) -> DecompositionDict:
    """Returns a simple hard-coded decomposition
    dictionary to be used for testing and protoptyping.

    The decomposition is compatible with one-qubit or
    two-qubit circuits involving only Pauli and CNOT gates.

    The keys of the output dictionary are Pauli and CNOT operations.

    The decomposition assumes that Pauli and CNOT operations,
    followed by local depolarizing noise, are implementable.

    Args:
        base_noise: The depolarizing noise level.
        simplify_paulis: If True, products of Paulis are simplified to a
            single Pauli. If False, Pauli sequences are not simplified.

    Returns:
        decomposition_dict: The decomposition dictionary.

    """
    # Initialize two qubits
    qreg = LineQubit.range(2)

    # Single-qubit Pauli operations
    i0 = I.on(qreg[0])
    x0 = X.on(qreg[0])
    y0 = Y.on(qreg[0])
    z0 = Z.on(qreg[0])
    i1 = I.on(qreg[1])
    x1 = X.on(qreg[1])
    y1 = Y.on(qreg[1])
    z1 = Z.on(qreg[1])
    single_paulis = [x0, y0, z0, x1, y1, z1]

    # Single-qubit decomposition coefficients
    epsilon = base_noise * 4 / 3
    c_neg = -(1 / 4) * epsilon / (1 - epsilon)
    c_pos = 1 - 3 * c_neg
    assert np.isclose(c_pos + 3 * c_neg, 1.0)

    # Single-qubit decomposition dictionary
    decomposition_dict = {}
    if simplify_paulis:
        # Hard-coded simplified gates
        decomposition_dict = {
            x0: [(c_pos, [x0]), (c_neg, [i0]), (c_neg, [z0]), (c_neg, [y0])],
            y0: [(c_pos, [y0]), (c_neg, [z0]), (c_neg, [i0]), (c_neg, [x0])],
            z0: [(c_pos, [z0]), (c_neg, [y0]), (c_neg, [x0]), (c_neg, [i0])],
            x1: [(c_pos, [x1]), (c_neg, [i1]), (c_neg, [z1]), (c_neg, [y1])],
            y1: [(c_pos, [y1]), (c_neg, [z1]), (c_neg, [i1]), (c_neg, [x1])],
            z1: [(c_pos, [z1]), (c_neg, [y1]), (c_neg, [x1]), (c_neg, [i1])],
        }
    else:
        for local_paulis in [[x0, y0, z0], [x1, y1, z1]]:
            for key in local_paulis:
                key_deco_pos = [(c_pos, [key])]
                key_deco_neg = [(c_neg, [key, op]) for op in local_paulis]
                decomposition_dict[key] = (
                    key_deco_pos + key_deco_neg  # type: ignore
                )

    # Two-qubit Paulis
    xx = [x0, x1]
    xy = [x0, y1]
    xz = [x0, z1]
    yx = [y0, x1]
    yy = [y0, y1]
    yz = [y0, z1]
    zx = [z0, x1]
    zy = [z0, y1]
    zz = [z0, z1]
    double_paulis = [xx, xy, xz, yx, yy, yz, zx, zy, zz]

    # Two-qubit decomposition coefficients (assuming local noise)
    c_pos_pos = c_pos * c_pos
    c_pos_neg = c_neg * c_pos
    c_neg_neg = c_neg * c_neg
    assert np.isclose(c_pos_pos + 6 * c_pos_neg + 9 * c_neg_neg, 1.0)

    cnot = CNOT.on(qreg[0], qreg[1])
    cnot_decomposition = [(c_pos_pos, [cnot])]
    for p in single_paulis:
        cnot_decomposition.append((c_pos_neg, [cnot] + [p]))
    for pp in double_paulis:
        cnot_decomposition.append((c_neg_neg, [cnot] + pp))  # type: ignore

    decomposition_dict[cnot] = cnot_decomposition  # type: ignore

    return decomposition_dict  # type: ignore
Exemple #9
0
def test_get_imp_sequences_with_simplify():
    q = LineQubit(0)
    expected_imp_sequences = [[X.on(q)], [I.on(q)], [Z.on(q)], [Y.on(q)]]
    assert get_imp_sequences(X.on(q), DECO_DICT_SIMP) == expected_imp_sequences