def _compute_whitening(whitening, net, image_size, transform, ms, msp): # compute whitening start = time.time() print('>> {}: Learning whitening...'.format(whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(whitening)) wvecs = extract_vectors(net, images, image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} elapsed = time.time() - start print('>> {}: elapsed time: {}'.format(whitening, htime(elapsed))) return Lw, elapsed
def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) start = time.time() # Read features. locations_1, _, descriptors_1, _, _ = feature_io.ReadFromFile( cmd_args.features_1_path) num_features_1 = locations_1.shape[0] tf.logging.info("Loaded image 1's %d features" % num_features_1) locations_2, _, descriptors_2, _, _ = feature_io.ReadFromFile( cmd_args.features_2_path) num_features_2 = locations_2.shape[0] tf.logging.info("Loaded image 2's %d features" % num_features_2) # Find nearest-neighbor matches using a KD tree. d1_tree = spatial.cKDTree(descriptors_1) _, indices = d1_tree.query( descriptors_2, distance_upper_bound=_DISTANCE_THRESHOLD) print('>> feature match elapsed time: {}'.format(htime(time.time() - start))) # Select feature locations for putative matches. locations_2_to_use = np.array([ locations_2[i,] for i in range(num_features_2) if indices[i] != num_features_1 ]) locations_1_to_use = np.array([ locations_1[indices[i],] for i in range(num_features_2) if indices[i] != num_features_1 ]) # Perform geometric verification using RANSAC. _, inliers = measure.ransac((locations_1_to_use, locations_2_to_use), transform.AffineTransform, min_samples=3, residual_threshold=20, max_trials=1000) tf.logging.info('Found %d inliers' % sum(inliers)) # Visualize correspondences, and save to file. _, ax = plt.subplots() img_1 = mpimg.imread(cmd_args.image_1_path) img_2 = mpimg.imread(cmd_args.image_2_path) inlier_idxs = np.nonzero(inliers)[0] feature.plot_matches( ax, img_1, img_2, locations_1_to_use, locations_2_to_use, np.column_stack((inlier_idxs, inlier_idxs)), matches_color='b') ax.axis('off') ax.set_title('DELF correspondences') plt.savefig(cmd_args.output_image)
def test(datasets, net): print(">> Evaluating network on test datasets...") image_size = 1024 # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta["mean"], std=net.meta["std"]) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening # Lw = None Lw = net.meta["Lw"]["retrieval-SfM-120k"]["ss"] # evaluate on test datasets # datasets = args.test_datasets.split(",") for dataset in datasets: start = time.time() print(">> {}: Extracting...".format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), "test")) images = [cfg["im_fname"](cfg, i) for i in range(cfg["n"])] qimages = [cfg["qim_fname"](cfg, i) for i in range(cfg["nq"])] bbxs = [tuple(cfg["gnd"][i]["bbx"]) for i in range(cfg["nq"])] # extract database and query vectors print(">> {}: database images...".format(dataset)) vecs = extract_vectors(net, images, image_size, transform) print(">> {}: query images...".format(dataset)) qvecs = extract_vectors(net, qimages, image_size, transform, bbxs) print(">> {}: Evaluating...".format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() # search, rank, and print scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset, ranks, cfg["gnd"]) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw["m"], Lw["P"]) qvecs_lw = whitenapply(qvecs, Lw["m"], Lw["P"]) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset + " + whiten", ranks, cfg["gnd"]) print(">> {}: elapsed time: {}".format(dataset, htime(time.time() - start)))
def validate(val_loader, model, criterion, epoch): batch_time = AverageMeter() losses = AverageMeter() # create tuples for validation t_start = time.time() avg_neg_distance = val_loader.dataset.create_epoch_tuples(model) print("Mining time: {}".format(htime(time.time() - t_start))) # switch to evaluate mode model.eval() end = time.time() for i, (input, target) in enumerate(val_loader): nq = len(input) # number of training tuples ni = len(input[0]) # number of images per tuple output = torch.zeros(model.meta['outputdim'], nq * ni).cuda() for q in range(nq): for imi in range(ni): # compute output vector for image imi of query q output[:, q * ni + imi] = model(input[q][imi].cuda()).squeeze() # no need to reduce memory consumption (no backward pass): # compute loss for the full batch loss = criterion(output, torch.cat(target).cuda()) # record loss losses.update(loss.item() / nq, nq) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if (i + 1) % args.print_freq == 0 or i == 0 or (i + 1) == len(val_loader): print('>> Val: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})'.format( epoch + 1, i + 1, len(val_loader), batch_time=batch_time, loss=losses)) return losses.avg
def train(train_loader, model, criterion, optimizer, epoch): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() # create tuples for training t_start = time.time() avg_neg_distance = train_loader.dataset.create_epoch_tuples(model) print("Mining time: {}".format(htime(time.time() - t_start))) # switch to train mode model.train() model.apply(set_batchnorm_eval) end = time.time() for i, (input, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) # zero out gradients so we can accumulate new ones over batches optimizer.zero_grad() nq = len(input) # number of training tuples ni = len(input[0]) # number of images per tuple for q in range(nq): output = torch.zeros(model.meta['outputdim'], ni).cuda() for imi in range(ni): # compute output vector for image imi output[:, imi] = model(input[q][imi].cuda()).squeeze() # reducing memory consumption: # compute loss for this query tuple only # then, do backward pass for one tuple only # each backward pass gradients will be accumulated # the optimization step is performed for the full batch later loss = criterion(output, target[q].cuda()) losses.update(loss.item()) loss.backward() # do one step for multiple batches # accumulated gradients are used optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if (i + 1) % args.print_freq == 0 or i == 0 or ( i + 1) == len(train_loader): print('>> Train: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})'.format( epoch + 1, i + 1, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses), flush=True) return losses.avg
def main(): args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id using_cdvs = float(args.using_cdvs) # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained networks (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks')) else: # fine-tuned network from path state = torch.load(args.network_path) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get('local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False # load network net = init_network(net_params) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: # parse off-the-shelf parameters offtheshelf = args.network_offtheshelf.split('-') net_params = {} net_params['architecture'] = offtheshelf[0] net_params['pooling'] = offtheshelf[1] net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:] net_params['regional'] = 'reg' in offtheshelf[2:] net_params['whitening'] = 'whiten' in offtheshelf[2:] net_params['pretrained'] = True # load off-the-shelf network print(">> Loading off-the-shelf network:\n>>>> '{}'".format(args.network_offtheshelf)) net = init_network(net_params) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = list(eval(args.multiscale)) if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta['regional'] and not net.meta['whitening']: msp = net.pool.p.item() print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms)) print(">>>> msp: {}".format(msp)) else: msp = 1 # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize( mean=net.meta['mean'], std=net.meta['std'] ) transform = transforms.Compose([ transforms.ToTensor(), normalize ]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening)) if len(ms) > 1: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: # if we evaluate networks from path we should save/load whitening # not to compute it every time if args.network_path is not None: whiten_fn = args.network_path + '_{}_whiten'.format(args.whitening) if len(ms) > 1: whiten_fn += '_ms' whiten_fn += '.pth' else: whiten_fn = None if whiten_fn is not None and os.path.isfile(whiten_fn): print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening)) Lw = torch.load(whiten_fn) else: print('>> {}: Learning whitening...'.format(args.whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} # saving whitening if whiten_fn exists if whiten_fn is not None: print('>> {}: Saving to {}...'.format(args.whitening, whiten_fn)) torch.save(Lw, whiten_fn) print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start))) else: Lw = None # evaluate on test datasets datasets = args.datasets.split(',') result_dir=args.network_path[0:-8] epoch_lun=args.network_path[0:-8].split('/')[-1].replace('model_epoch','') print(">> Creating directory if it does not exist:\n>> '{}'".format(result_dir)) if not os.path.exists(result_dir): os.makedirs(result_dir) for dataset in datasets: start = time.time() # search, rank, and print print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) tuple_bbxs_qimlist=None tuple_bbxs_imlist=None images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])] # extract database and query vectors print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=tuple_bbxs_qimlist, ms=ms, msp=msp, batchsize=1) qvecs = qvecs.numpy() qvecs = qvecs.astype(np.float32) np.save(os.path.join(result_dir, "{}_qvecs_ep{}_resize.npy".format(dataset,epoch_lun)), qvecs) print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, bbxs=tuple_bbxs_imlist, msp=msp, batchsize=1) vecs = vecs.numpy() vecs = vecs.astype(np.float32) np.save(os.path.join(result_dir, "{}_vecs_ep{}_resize.npy".format(dataset,epoch_lun)), vecs) scores = np.dot(vecs.T, qvecs) if using_cdvs!=0: print('>> {}: cdvs global descriptor loading...'.format(dataset)) qvecs_global = cfg['qimlist_global'] vecs_global = cfg['imlist_global'] scores_global = np.dot(vecs_global, qvecs_global.T) scores+=scores_global*using_cdvs ranks = np.argsort(-scores, axis=0) if args.ir_remove!='0': rank_len=10 rank_re = np.loadtxt(os.path.join(result_dir, '{}_ranks_new_relevent.txt'.format(dataset))) ## the max value of rank_len MAX_RANK_LEN = int((rank_re.shape[0]) ** 0.5) rank_re=rank_re.reshape(MAX_RANK_LEN,MAX_RANK_LEN,rank_re.shape[1]) for m in range(rank_re.shape[2]): for i in range(rank_re.shape[0]): rank_re[i][i][m]=1.0 quanzhong=[1,0.7,0.4]+[0.1]*(MAX_RANK_LEN-3) for m in range(rank_re.shape[2]): #if adaption, then change the rank_len to a adaption params according to the rank_re_q, q_aer, cons_n if args.ir_adaption: using_local_query=True cons_n = 5 q_aer = float(args.ir_adaption) if using_local_query: ## using local feature scores, please don't forget note the query_q belong to deep rank_re_q = np.loadtxt(os.path.join(result_dir, '{}_ranks_new_query.txt'.format(dataset))) query_q = rank_re_q[:, m] else: ## using deep feature scores query_q = scores[ranks[:, m], m] rank_len=0 jishu=0 for idx in range(min(len(query_q),MAX_RANK_LEN)-cons_n): if jishu<cons_n: if query_q[idx]>q_aer: rank_len=idx+1 else: jishu+=1 else: break max_dim = min(rank_len, MAX_RANK_LEN) print (max_dim) if max_dim>2: #put the image to the MAX_RANK_LEN2 location if equals max_dim then re rank in the maxdim length list2 = [] list_hou = [] MAX_RANK_LEN2 = max_dim for i in range(MAX_RANK_LEN2): if i < max_dim: fenshu = 0 for j in range(max_dim): fenshu+=rank_re[min(i,j)][max(i,j)][m]*quanzhong[j] fenshu = fenshu / (max_dim - 1) if fenshu > float(args.ir_remove): list2.append(ranks[i][m]) else: list_hou.append(ranks[i][m]) else: list2.append(ranks[i][m]) ranks[0:MAX_RANK_LEN2, m] = list2 + list_hou np.savetxt(os.path.join(result_dir, "{}_ranks.txt".format(dataset)), ranks.astype(np.int)) if dataset == 'cdvs_test_retrieval': compute_map_and_print(dataset, ranks, cfg['gnd_id']) else: compute_map_and_print(dataset, ranks, cfg['gnd'])
# extract whitening vectors print('>> {}: Extracting...'.format(whitening)) # wvecs = vecs wvecs = np.hstack((vecs, qvecs)) # learning whitening print('>> {}: Learning...'.format(whitening)) m, P = pcawhitenlearn(wvecs) # m, P = whitenlearn(wvecs) Lw = {'m': m, 'P': P} # saving whitening if whiten_fn exists if whiten_fn is not None: print('>> {}: Saving to {}...'.format( whitening, whiten_fn)) # torch.save(Lw, whiten_fn) print('>> {}: elapsed time: {}'.format(whitening, htime(time.time() - start))) else: Lw = None if Lw is not None: for dim in param['pac_dims']: print('>>>> pac_dim: {}'.format(dim)) # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'], dim) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'], dim) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks_lw = np.argsort(-scores, axis=0) qvecs_lw_orig = qvecs_lw ranks_lw_orig = ranks_lw
def main(): args = parser.parse_args() # check if there are unknown datasets for dataset in args.datasets.split(','): if dataset not in datasets_names: raise ValueError( 'Unsupported or unknown dataset: {}!'.format(dataset)) # check if test dataset are downloaded # and download if they are not #download_train(get_data_root()) download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained networks (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks')) else: # fine-tuned network from path state = torch.load(args.network_path) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get( 'local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False # load network net = init_network(net_params) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: # parse off-the-shelf parameters offtheshelf = args.network_offtheshelf.split('-') net_params = {} net_params['architecture'] = offtheshelf[0] net_params['pooling'] = offtheshelf[1] net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:] net_params['regional'] = 'reg' in offtheshelf[2:] net_params['whitening'] = 'whiten' in offtheshelf[2:] net_params['pretrained'] = True # load off-the-shelf network print(">> Loading off-the-shelf network:\n>>>> '{}'".format( args.network_offtheshelf)) net = init_network(net_params) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = list(eval(args.multiscale)) if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[ 'regional'] and not net.meta['whitening']: msp = net.pool.p.item() print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms)) print(">>>> msp: {}".format(msp)) else: msp = 1 # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) if len(ms) > 1: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: # if we evaluate networks from path we should save/load whitening # not to compute it every time if args.network_path is not None: whiten_fn = args.network_path + '_{}_whiten'.format( args.whitening) if len(ms) > 1: whiten_fn += '_ms' whiten_fn += '.pth' else: whiten_fn = None if whiten_fn is not None and os.path.isfile(whiten_fn): print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) Lw = torch.load(whiten_fn) else: print('>> {}: Learning whitening...'.format(args.whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} # saving whitening if whiten_fn exists if whiten_fn is not None: print('>> {}: Saving to {}...'.format( args.whitening, whiten_fn)) torch.save(Lw, whiten_fn) print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start))) else: Lw = None # evaluate on test datasets datasets = args.datasets.split(',') for dataset in datasets: start = time.time() """ print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])] try: bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] except: bbxs = None # for holidaysmanrot and copydays # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp) print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() print (vecs.shape) print (qvecs.shape) # search, rank, and print scores = np.dot(vecs.T, qvecs) print (scores.shape) # to save scores (single query) # oxford #f = 'oxf_single.npy' # paris #f = 'par_single.npy' # roxford #f = 'roxf_single.npy' # rparis f = 'rpar_single.npy' ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset, ranks, cfg['gnd']) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P']) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P']) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) # save np.save(f, scores) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd']) """ ############################################################ # Test # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])] print(qimages) # to load scores # oxford #f = 'oxf_single.npy' #f = 'oxf_mq_avg.npy' #f = 'oxf_mq_max.npy' #f = 'oxf_sc_imf.npy' # paris #f = 'par_single.npy' #f = 'par_mq_avg.npy' #f = 'par_mq_max.npy' f = 'par_sc_imf.npy' # roxford #f = 'roxf_single.npy' #f = 'roxf_mq_avg.npy' #f = 'roxf_mq_max.npy' #f = 'roxf_sc_imf.npy' # rparis #f = 'rpar_single.npy' #f = 'rpar_mq_avg.npy' #f = 'rpar_mq_max.npy' #f = 'rpar_sc_imf.npy' # load scores = np.load(f) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd']) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start)))
def main(): args = parser.parse_args() # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained networks (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks')) else: # fine-tuned network from path state = torch.load(args.network_path) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get( 'local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False # load network net = init_network(net_params) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") if "epoch" in state: print("Model after {} epochs".format(state["epoch"])) print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: # parse off-the-shelf parameters offtheshelf = args.network_offtheshelf.split('-') net_params = {} net_params['architecture'] = offtheshelf[0] net_params['pooling'] = offtheshelf[1] net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:] net_params['regional'] = 'reg' in offtheshelf[2:] net_params['whitening'] = 'whiten' in offtheshelf[2:] net_params['pretrained'] = True # load off-the-shelf network print(">> Loading off-the-shelf network:\n>>>> '{}'".format( args.network_offtheshelf)) net = init_network(net_params) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters: test both single scale and multiscale ms_singlescale = [1] msp_singlescale = 1 ms_multiscale = list(eval(args.multiscale)) msp_multiscale = 1 if len(ms_multiscale ) > 1 and net.meta['pooling'] == 'gem' and not net.meta[ 'regional'] and not net.meta['whitening']: msp_multiscale = net.pool.p.item() print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms_multiscale)) print(">>>> msp: {}".format(msp_multiscale)) # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) Lw = net.meta['Lw'][args.whitening] else: # if we evaluate networks from path we should save/load whitening # not to compute it every time if args.network_path is not None: whiten_fn = args.network_path + '_{}_whiten'.format( args.whitening) whiten_fn += '.pth' else: whiten_fn = None if whiten_fn is not None and os.path.isfile(whiten_fn): print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) Lw = torch.load(whiten_fn) else: Lw = {} for whiten_type, ms, msp in zip( ["ss", "ms"], [ms_singlescale, ms_multiscale], [msp_singlescale, msp_multiscale]): print('>> {0}: Learning whitening {1}...'.format( args.whitening, whiten_type)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join( db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw[whiten_type] = {'m': m, 'P': P} print('>> {}: elapsed time: {}'.format( args.whitening, htime(time.time() - start))) # saving whitening if whiten_fn exists if whiten_fn is not None: print('>> {}: Saving to {}...'.format( args.whitening, whiten_fn)) torch.save(Lw, whiten_fn) else: Lw = None # evaluate on test datasets datasets = args.datasets.split(',') for dataset in datasets: start = time.time() for whiten_type, ms, msp in zip(["ss", "ms"], [ms_singlescale, ms_multiscale], [msp_singlescale, msp_multiscale]): print('>> Extracting feature on {0}, whitening {1}'.format( dataset, whiten_type)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])] bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp) print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() # search, rank, and print scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset, ranks, cfg['gnd']) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw[whiten_type]['m'], Lw[whiten_type]['P']) qvecs_lw = whitenapply(qvecs, Lw[whiten_type]['m'], Lw[whiten_type]['P']) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks = np.argsort(-scores, axis=0) compute_map_and_print( dataset + ' + whiten {}'.format(whiten_type), ranks, cfg['gnd']) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start)))
def main(): args = parser.parse_args() # check if test dataset are downloaded # and download if they are not #download_train(get_data_root()) #download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained networks (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks')) else: state = torch.load(args.network_path) net = init_network(model=state['meta']['architecture'], pooling=state['meta']['pooling'], whitening=state['meta']['whitening'], mean=state['meta']['mean'], std=state['meta']['std'], pretrained=False) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: offtheshelf = args.network_offtheshelf.split('-') if len(offtheshelf) == 3: if offtheshelf[2] == 'whiten': offtheshelf_whiten = True else: raise (RuntimeError( "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten" )) else: offtheshelf_whiten = False print(">> Loading off-the-shelf network:\n>>>> '{}'".format( args.network_offtheshelf)) net = init_network(model=offtheshelf[0], pooling=offtheshelf[1], whitening=offtheshelf_whiten) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = [1] msp = 1 if args.multiscale: ms = [1, 1. / math.sqrt(2), 1. / 2] if net.meta['pooling'] == 'gem' and net.whiten is None: msp = net.pool.p.data.tolist()[0] # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) if args.multiscale: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: print('>> {}: Learning whitening...'.format(args.whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start))) else: Lw = None # evaluate on test datasets datasets = args.datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])] bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp) print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() # search, rank, and print scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset, ranks, cfg['gnd']) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P']) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P']) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd']) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start)))
def test(datasets, net, noise, image_size): global base print(">> Evaluating network on test datasets...") net.cuda() net.eval() normalize = transforms.Normalize(mean=net.meta["mean"], std=net.meta["std"]) def add_noise(img): n = noise n = F.interpolate(n.unsqueeze(0), mode=MODE, size=tuple(img.shape[-2:]), align_corners=True).squeeze() return torch.clamp(img + n, 0, 1) transform_base = transforms.Compose([transforms.ToTensor(), normalize]) transform_query = transforms.Compose( [transforms.ToTensor(), transforms.Lambda(add_noise), normalize]) if "Lw" in net.meta: Lw = net.meta["Lw"]["retrieval-SfM-120k"]["ss"] else: Lw = None # evaluate on test datasets datasets = args.test_datasets.split(",") attack_result = {} for dataset in datasets: start = time.time() print(">> {}: Extracting...".format(dataset)) cfg = configdataset(dataset, os.path.join(get_data_root(), "test")) images = [cfg["im_fname"](cfg, i) for i in range(cfg["n"])] qimages = [cfg["qim_fname"](cfg, i) for i in range(cfg["nq"])] bbxs = [tuple(cfg["gnd"][i]["bbx"]) for i in range(cfg["nq"])] # extract database and query vectors print(">> {}: database images...".format(dataset)) with torch.no_grad(): if dataset in base and str(image_size) in base[dataset]: vecs = base[dataset][str(image_size)] else: vecs = extract_vectors(net, images, image_size, transform_base) if dataset not in base: base[dataset] = {} base[dataset][str(image_size)] = vecs fname = args.network_path.replace("/", "_") + ".pkl" with open(f"base/{fname}", "wb") as f: pickle.dump(base, f) print(">> {}: query images...".format(dataset)) qvecs = extract_vectors(net, qimages, image_size, transform_query, bbxs) print(">> {}: Evaluating...".format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() # whiten the vectors vecs_lw = whitenapply(vecs, Lw["m"], Lw["P"]) qvecs_lw = whitenapply(qvecs, Lw["m"], Lw["P"]) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks = np.argsort(-scores, axis=0) r = compute_map_and_print(dataset + " + whiten", ranks, cfg["gnd"]) attack_result[dataset] = r print(">> {}: elapsed time: {}".format(dataset, htime(time.time() - start))) return inv_gfr( attack_result, baseline_result[net.meta["architecture"]][net.meta["pooling"]])
def main(): args = parser.parse_args() # check if test dataset are downloaded # and download if they are not download_train(get_data_root()) download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path if args.network_path is not None: net = load_network(args.network_path) # loading offtheshelf network elif args.network_offtheshelf is not None: net = load_offtheshelf(args.network_offtheshelf) # setting up the multi-scale parameters ms = [1] msp = 1 if args.multiscale: ms = [1, 1./math.sqrt(2), 1./2] if net.meta['pooling'] == 'gem' and net.whiten is None: msp = net.pool.p.data.tolist()[0] # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize( mean=net.meta['mean'], std=net.meta['std'] ) transform = transforms.Compose([ transforms.ToTensor(), normalize ]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening)) if args.multiscale: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: print('>> {}: Learning whitening...'.format(args.whitening)) if args.whitening == "scores": # special logic for scores database from score_retrieval.exports import ( db, train_images as images, ) else: # loading db db_root = os.path.join(get_data_root(), 'train', args.test_whiten) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start))) else: Lw = None # evaluate on test datasets datasets = args.datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) if dataset == "scores": # Special added logic to handle loading our score dataset from score_retrieval.exports import ( images, qimages, gnd, ) print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, ms=ms, msp=msp) else: # extract ground truth cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) gnd = cfg['gnd'] # prepare config structure for the test dataset images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])] bbxs = [tuple(gnd[i]['bbx']) for i in range(cfg['nq'])] # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp) # validation print(">> {}: gnd stats: {}, {}, {}".format( dataset, len(gnd), [len(x["ok"]) for x in gnd[10:]], [len(x["junk"]) for x in gnd[10:]], )) print(">> {}: image stats: {}, {}".format(dataset, len(images), len(qimages))) assert len(gnd) == len(qimages), (len(gnd), len(qimages)) print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() print(">> {}: qvecs.shape: {}".format(dataset, qvecs.shape)) # search, rank, and print scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) print(">> {}: ranks (shape {}) head: {}".format(dataset, ranks.shape, ranks[10:,10:])) print(">> {}: gnd head: {}".format(dataset, gnd[5:])) # Compute and print metrics compute_acc(ranks, gnd, dataset) compute_mrr(ranks, gnd, dataset) compute_map_and_print(dataset, ranks, gnd) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P']) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P']) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks = np.argsort(-scores, axis=0) compute_acc(ranks, gnd, dataset + " + whiten") compute_mrr(ranks, gnd, dataset + " + whiten") compute_map_and_print(dataset + " + whiten", ranks, gnd) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
def main(): args = parser.parse_args() # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path result_dir = 'retreival_results' if args.network_path is not None: result_dir = os.path.join(result_dir, args.network_path) print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained networks (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks')) else: state = torch.load(args.network_path) net = init_network(model=state['meta']['architecture'], pooling=state['meta']['pooling'], whitening=state['meta']['whitening'], mean=state['meta']['mean'], std=state['meta']['std'], pretrained=False) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: result_dir = os.path.join(result_dir, args.network_offtheshelf) offtheshelf = args.network_offtheshelf.split('-') if len(offtheshelf) == 3: if offtheshelf[2] == 'whiten': offtheshelf_whiten = True else: raise (RuntimeError( "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten" )) else: offtheshelf_whiten = False print(">> Loading off-the-shelf network:\n>>>> '{}'".format( args.network_offtheshelf)) net = init_network(model=offtheshelf[0], pooling=offtheshelf[1], whitening=offtheshelf_whiten) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = [1] msp = 1 if args.multiscale: ms = [1, 1. / math.sqrt(2), 1. / 2] if net.meta['pooling'] == 'gem' and net.whiten is None: msp = net.pool.p.data.tolist()[0] # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) if args.multiscale: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: # Save whitening TODO print('>> {}: Learning whitening...'.format(args.whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start))) else: Lw = None # evaluate on test datasets data_root = args.data_root datasets = datasets_names[args.dataset] result_dict = {} for dataset in datasets: start = time.time() result_dict[dataset] = {} print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset images = get_imlist(data_root, dataset, args.train_txt) qimages = get_imlist(data_root, dataset, args.query_txt) # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, root=os.path.join(data_root, dataset), ms=ms, msp=msp) print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, root=os.path.join(data_root, dataset), ms=ms, msp=msp) print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() scores, ranks = cal_ranks(vecs, vecs, Lw) result_dict[dataset]['train'] = {'scores': scores, 'ranks': ranks} scores, ranks = cal_ranks(vecs, qvecs, Lw) result_dict[dataset]['test'] = {'scores': scores, 'ranks': ranks} print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start))) # Save retrieval results if not os.path.exists(result_dir): os.makedirs(result_dir) result_file = os.path.join(result_dir, args.outfile) np.save(result_file, result_dict) print('Save retrieval results to {}'.format(result_file))
def main(): args = parser.parse_args() # check if there are unknown datasets for dataset in args.datasets.split(','): if dataset not in datasets_names: raise ValueError('Unsupported or unknown dataset: {}!'.format(dataset)) # check if test dataset are downloaded # and download if they are not # download_train(get_data_root()) # download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained networks (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks')) else: # fine-tuned network from path state = torch.load(args.network_path) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get('local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False net_params['multi_layer_cat'] = state['meta']['multi_layer_cat'] # load network net = init_network(net_params) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: # parse off-the-shelf parameters offtheshelf = args.network_offtheshelf.split('-') net_params = {} net_params['architecture'] = offtheshelf[0] net_params['pooling'] = offtheshelf[1] net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:] net_params['regional'] = 'reg' in offtheshelf[2:] net_params['whitening'] = 'whiten' in offtheshelf[2:] net_params['pretrained'] = True # load off-the-shelf network print(">> Loading off-the-shelf network:\n>>>> '{}'".format(args.network_offtheshelf)) net = init_network(net_params) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters print(">> image size: {}".format(args.image_size)) ms = list(eval(args.multiscale)) if len(ms)>1 and net.meta['pooling'] == 'gem' and not net.meta['regional'] and not net.meta['whitening']: msp = net.pool.p.item() print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms)) print(">>>> msp: {}".format(msp)) else: msp = 1 print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms)) print(">>>> msp: {}".format(msp)) # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize( mean=net.meta['mean'], std=net.meta['std'] ) transform = transforms.Compose([ transforms.ToTensor(), normalize ]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening)) if len(ms)>1: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: # if we evaluate networks from path we should save/load whitening # not to compute it every time if args.network_path is not None: whiten_fn = args.network_path + '_{}_whiten'.format(args.whitening) if len(ms) > 1: whiten_fn += '_ms' whiten_fn += '.pth' else: whiten_fn = None if whiten_fn is not None and os.path.isfile(whiten_fn): print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening)) Lw = torch.load(whiten_fn) else: print('>> {}: Learning whitening...'.format(args.whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} # saving whitening if whiten_fn exists if whiten_fn is not None: print('>> {}: Saving to {}...'.format(args.whitening, whiten_fn)) torch.save(Lw, whiten_fn) print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start))) else: Lw = None # evaluate on test datasets datasets = args.datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])] # bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] print('>> not use bbxs...') bbxs = None # key_url_list = ParseData(os.path.join(get_data_root(), 'index.csv')) # index_image_path = os.path.join(get_data_root(), 'resize_index_image') # images = [os.path.join(index_image_path, key_url_list[i][0]) for i in range(len(key_url_list))] # key_url_list = ParseData(os.path.join(get_data_root(), 'test.csv')) # test_image_path = os.path.join(get_data_root(), 'resize_test_image') # qimages = [os.path.join(test_image_path, key_url_list[i][0]) for i in range(len(key_url_list))] # # bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] # csvfile = open(os.path.join(get_data_root(), 'index_clear.csv'), 'r') # csvreader = csv.reader(csvfile) # images = [line[:1][0] for line in csvreader] # # csvfile = open(os.path.join(get_data_root(), 'test_clear.csv'), 'r') # csvreader = csv.reader(csvfile) # qimages = [line[:1][0] for line in csvreader] # bbxs = None # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # vecs = torch.randn(2048, 5063) # vecs = torch.randn(2048, 4993) # hxq modified # bbxs = None # print('>> set no bbxs...') print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp) print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() # search, rank, and print scores = np.dot(vecs.T, qvecs) # hxq modified, test add features map for retrieval # vecs = [vecs[i].numpy() for i in range(len(vecs))] # qvecs_temp = np.zeros((qvecs[0].shape[0], len(qvecs))) # for i in range(len(qvecs)): # qvecs_temp[:, i] = qvecs[i][:, 0].numpy() # qvecs = qvecs_temp # # scores = np.zeros((len(vecs), qvecs.shape[-1])) # for i in range(len(vecs)): # scores[i, :] = np.amax(np.dot(vecs[i].T, qvecs), 0) ranks = np.argsort(-scores, axis=0) mismatched_info = compute_map_and_print(dataset, ranks, cfg['gnd'], kappas=[1, 5, 10, 100]) # hxq added show_false_img = False if show_false_img == True: print('>> Save mismatched image tuple...') for info in mismatched_info: mismatched_img_show_save(info, qimages, images, args, bbxs=bbxs) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P']) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P']) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks = np.argsort(-scores, axis=0) mismatched_info = compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd']) # hxq added # show_false_img = False if show_false_img == True: print('>> Save mismatched image tuple...') for info in mismatched_info: mismatched_img_show_save(info, qimages, images, args, bbxs=bbxs) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
def main(): #def process(network_path, datasets='oxford5k,paris6k', whitening=None, image_size=1024, multiscale = '[1]', query=None): args = parser.parse_args() #args.query = None # check if there are unknown datasets for dataset in args.datasets.split(','): if dataset not in datasets_names: raise ValueError( 'Unsupported or unknown dataset: {}!'.format(dataset)) # check if test dataset are downloaded # and download if they are not #download_train(get_data_root()) #download_test(get_data_root()) # setting up the visible GPU #os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained networks (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks')) else: # fine-tuned network from path state = torch.load(args.network_path) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get( 'local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False # load network net = init_network(net_params) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = list(eval(args.multiscale)) if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[ 'regional'] and not net.meta['whitening']: msp = net.pool.p.item() print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms)) print(">>>> msp: {}".format(msp)) else: msp = 1 # moving network to gpu and eval mode #net.cuda() #net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) if len(ms) > 1: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: # if we evaluate networks from path we should save/load whitening # not to compute it every time if args.network_path is not None: whiten_fn = args.network_path + '_{}_whiten'.format( args.whitening) if len(ms) > 1: whiten_fn += '_ms' whiten_fn += '.pth' else: whiten_fn = None print(whiten_fn) return if whiten_fn is not None and os.path.isfile(whiten_fn): print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) Lw = torch.load(whiten_fn) else: print('>> {}: Learning whitening...'.format(args.whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} # saving whitening if whiten_fn exists if whiten_fn is not None: print('>> {}: Saving to {}...'.format( args.whitening, whiten_fn)) torch.save(Lw, whiten_fn) print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start))) else: Lw = None # evaluate on test datasets datasets = args.datasets.split(',') # query type for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) #for i in cfg: print(i) #print(cfg['gnd'][0]['bbx']) #return # extract database and query vectors print('>> {}: database images...'.format(dataset)) feas_dir = os.path.join(cfg['dir_data'], 'features') if not os.path.isdir(feas_dir): os.mkdir(feas_dir) feas_sv = os.path.join( feas_dir, dataset + '_' + args.network_path + '_features.pkl') if not os.path.isfile(feas_sv): images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) with open(feas_sv, 'wb') as f: pickle.dump(vecs, f) else: with open(feas_sv, 'rb') as f: vecs = pickle.load(f) print('>> {}: query images...'.format(dataset)) if args.query is not None: qimages = [args.query] qvecs = extract_vectors(net, qimages, args.image_size, transform, ms=ms, msp=msp) else: qfeas_dir = feas_dir qfeas_sv = os.path.join( qfeas_dir, dataset + '_' + args.network_path + '_qfeatures.pkl') if not os.path.isfile(qfeas_sv): qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])] try: bbxs = [ tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq']) ] except: bbxs = None qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp) with open(qfeas_sv, 'wb') as f: pickle.dump(qvecs, f) else: with open(qfeas_sv, 'rb') as f: qvecs = pickle.load(f) print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() #qvecs = qvecs[:, 0].reshape(-1, 1) #args.query = True # search, rank, and print if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P']) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P']) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranksw = np.argsort(-scores, axis=0) if args.query is None: #compute_map_and_print(dataset + ' + whiten', ranksw, cfg['gnd']) compute_map_and_print1(dataset + ' + whiten', ranksw, cfg['gnd']) scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) # compute_map_and_print(dataset, ranks, cfg['gnd']) compute_map_and_print1(dataset, ranks, cfg['gnd']) else: a = [] for i in ranksw: a.append( os.path.join(cfg['dir_images'], cfg['imlist'][i[0]]) + cfg['ext']) print(a[:10]) result = cfg['dir_data'] + '_result' with open(result + '.pkl', 'wb') as f: pickle.dump(a[:10], f) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start)))
def main(): args = parser.parse_args() # check if there are unknown datasets for dataset in args.datasets.split(','): if dataset not in datasets_names: raise ValueError( 'Unsupported or unknown dataset: {}!'.format(dataset)) # check if test dataset are downloaded # and download if they are not #download_train(get_data_root()) #download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained networks (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks')) else: # fine-tuned network from path state = torch.load(args.network_path) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get( 'local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False # load network net = init_network(net_params) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: # parse off-the-shelf parameters offtheshelf = args.network_offtheshelf.split('-') net_params = {} net_params['architecture'] = offtheshelf[0] net_params['pooling'] = offtheshelf[1] net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:] net_params['regional'] = 'reg' in offtheshelf[2:] net_params['whitening'] = 'whiten' in offtheshelf[2:] net_params['pretrained'] = True # load off-the-shelf network print(">> Loading off-the-shelf network:\n>>>> '{}'".format( args.network_offtheshelf)) net = init_network(net_params) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = list(eval(args.multiscale)) if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[ 'regional'] and not net.meta['whitening']: msp = net.pool.p.item() print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms)) print(">>>> msp: {}".format(msp)) else: msp = 1 # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) if len(ms) > 1: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: # if we evaluate networks from path we should save/load whitening # not to compute it every time if args.network_path is not None: whiten_fn = args.network_path + '_{}_whiten'.format( args.whitening) if len(ms) > 1: whiten_fn += '_ms' whiten_fn += '.pth' else: whiten_fn = None if whiten_fn is not None and os.path.isfile(whiten_fn): print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) Lw = torch.load(whiten_fn) else: print('>> {}: Learning whitening...'.format(args.whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} # saving whitening if whiten_fn exists if whiten_fn is not None: print('>> {}: Saving to {}...'.format( args.whitening, whiten_fn)) torch.save(Lw, whiten_fn) print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start))) else: Lw = None # evaluate on test datasets datasets = args.datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset #cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [] gallery_file = open( '/home/zzd/University1652-Baseline/gallery_name.txt') for line in gallery_file: images.append('/home/zzd/University1652-Baseline/' + line.replace('\n', '')[2:]) #qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])] qimages = [] query_file = open('/home/zzd/University1652-Baseline/query_name.txt') for line in query_file: qimages.append('/home/zzd/University1652-Baseline/' + line.replace('\n', '')[2:]) gallery_label = get_id(images) query_label = get_id(qimages) # extract database and query vectors print('>> {}: database images...'.format(dataset)) gallery_feature = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) gallery_feature = torch.transpose(gallery_feature, 0, 1) print('>> {}: query images...'.format(dataset)) query_feature = extract_vectors(net, qimages, args.image_size, transform, ms=ms, msp=msp) query_feature = torch.transpose(query_feature, 0, 1) result = { 'gallery_f': gallery_feature.numpy(), 'gallery_label': gallery_label, 'query_f': query_feature.numpy(), 'query_label': query_label } scipy.io.savemat('pytorch_result.mat', result) os.system('python evaluate_gpu.py') print('>> {}: Evaluating...'.format(dataset))
def main(): args = parser.parse_args() # check if test dataset are downloaded # and download if they are not download_train(get_data_root()) download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) state = torch.load(args.network_path) net = init_network(model=state['meta']['architecture'], pooling=state['meta']['pooling'], whitening=state['meta']['whitening'], mean=state['meta']['mean'], std=state['meta']['std'], pretrained=False) net.load_state_dict(state['state_dict']) print(">>>> loaded network: ") print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: offtheshelf = args.network_offtheshelf.split('-') if len(offtheshelf) == 3: if offtheshelf[2] == 'whiten': offtheshelf_whiten = True else: raise (RuntimeError( "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten" )) else: offtheshelf_whiten = False print(">> Loading off-the-shelf network:\n>>>> '{}'".format( args.network_offtheshelf)) net = init_network(model=offtheshelf[0], pooling=offtheshelf[1], whitening=offtheshelf_whiten) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = [1] msp = 1 if args.multiscale: ms = [1, 1. / math.sqrt(2), 1. / 2] if net.meta['pooling'] == 'gem' and net.whiten is None: msp = net.pool.p.data.tolist()[0] # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening if args.whitening is not None: start = time.time() print('>> {}: Learning whitening...'.format(args.whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start))) else: Lw = None datasets = args.datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) if dataset == 'reco': images, qimages = landmark_recognition_dataset() bbxs = [None for x in qimages] elif dataset == 'retr': images, _ = landmark_retrieval_dataset() qimages = [] bbxs = [None for x in qimages] else: # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])] bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] with open('%s_fnames.pkl' % dataset, 'wb') as f: pickle.dump([images, qimages], f) # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) vecs = vecs.numpy() print('>> saving') np.save('{}_vecs.npy'.format(dataset), vecs) if len(qimages) > 0: print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp) qvecs = qvecs.numpy() np.save('{}_qvecs.npy'.format(dataset), qvecs) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P']) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P']) # TODO print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start)))
def test(args, config, model, rank=None, world_size=None, **varargs): log_debug('Evaluating network on test datasets...') # Eval mode model.eval() data_config = config["dataloader"] local_config = config["local"] # Average score avg_score = 0.0 # Evaluate on test datasets list_datasets = data_config.getstruct("test_datasets") for dataset in list_datasets: start = time.time() Avg_F_score = 0. log_debug('{%s}: Loading Dataset', dataset) for split in {"v", "i"}: test_tf = ISSTestTransform( rgb_mean=data_config.getstruct("rgb_mean"), rgb_std=data_config.getstruct("rgb_std"), shortest_size=data_config.getint("test_shortest_size"), longest_max_size=data_config.getint("test_longest_max_size"), num_kpt=2000, kpt_type='superpoint') test_db = HPacthes(root_dir=args.data, name=dataset, split=split, transform=test_tf) test_sampler = DistributedARBatchSampler( data_source=test_db, batch_size=data_config.getint("test_batch_size"), num_replicas=world_size, rank=rank, drop_last=True, shuffle=False) test_dl = torch.utils.data.DataLoader(test_db, batch_sampler=test_sampler, collate_fn=iss_collate_fn, pin_memory=True, num_workers=0, shuffle=False) log_debug('{%s}: Feature Extraction %s...', dataset, split) for it, batch in tqdm(enumerate(test_dl), total=len(test_dl)): with torch.no_grad(): # Upload batch img1_path, img2_path = batch["img1_path"][0], batch[ "img2_path"][0] scores1 = batch["scores1"][0] scores2 = batch["scores2"][0] batch = { k: batch[k].cuda(device=varargs["device"], non_blocking=True) for k in HP_INPUTS } # Run Image 1 _, pred1 = model(img=batch["img1"], kpts=batch["kpts1"], do_prediction=True, do_augmentaton=False) distributed.barrier() kpts1, _ = batch["kpts1"].contiguous pred1, _ = pred1["local_pred"].contiguous kpts1 = kpts1.squeeze(0) pred1 = pred1.squeeze(0) with open(img1_path + ".npz", 'wb') as output_file: np.savez(output_file, keypoints=kpts1.cpu().numpy(), descriptors=pred1.cpu().numpy(), scores=scores1) # Run Image 2 _, pred2 = model(img=batch["img2"], kpts=batch["kpts2"], do_prediction=True, do_augmentaton=False) distributed.barrier() kpts2, _ = batch["kpts2"].contiguous pred2, _ = pred2["local_pred"].contiguous kpts2 = kpts2.squeeze(0) pred2 = pred2.squeeze(0) with open(img2_path + ".npz", 'wb') as output_file: np.savez(output_file, keypoints=kpts2.cpu().numpy(), descriptors=pred2.cpu().numpy(), scores=scores2) log_debug('{%s}: Run Evalution %s...', dataset, split) # run evaluation config = {'correctness_threshold': 3, 'max_mma_threshold': 10} H_estimation, Precision, Recall, MMA = run_descriptor_evaluation( config, test_dl) # compute F score F_score = 2 * ((Precision * Recall) / (Precision + Recall + 1e-10)) Avg_F_score += 0.5 * F_score np.set_printoptions(precision=3) log_info('{%s}: H_estimation_%s = %s', dataset, split, format(H_estimation, '.3f')) log_info('{%s}: Precision_%s = %s', dataset, split, format(Precision, '.3f')) log_info('{%s}: Recall_%s = %s', dataset, split, format(Recall, '.3f')) log_info('{%s}: MMA_%s = %s', dataset, split, MMA) log_info('{%s}: F_score_%s = %s', dataset, split, format(F_score, '.3f')) log_info('{%s}: Running time = %s', dataset, htime(time.time() - start)) log_info('{%s}: Avg_F_score = %s', dataset, format(Avg_F_score, '.3f')) return Avg_F_score
def main(): args = parser.parse_args() # check if there are unknown datasets for dataset in args.datasets.split(','): if dataset not in datasets_names: raise ValueError( 'Unsupported or unknown dataset: {}!'.format(dataset)) # check if test dataset are downloaded # and download if they are not download_train(get_data_root()) download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network # pretrained networks (downloaded automatically) print(">> Loading network:\n>>>> '{}'".format(args.network)) state = load_url(PRETRAINED[args.network], model_dir=os.path.join(get_data_root(), 'networks')) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get('local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False # network initialization net = init_network(net_params) net.load_state_dict(state['state_dict']) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = list(eval(args.multiscale)) print(">>>> Evaluating scales: {}".format(ms)) # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # evaluate on test datasets datasets = args.datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])] try: bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] except: bbxs = None # for holidaysmanrot and copydays # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms) print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms) print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() # search, rank, and print scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) top_k = 100 ranks_fnames_qs = [] for q_id in range(len(cfg["qimlist"])): ranks_q = list(ranks[:top_k, q_id]) ranks_fname_per_q = [] for img_id in ranks_q: ranks_fname_per_q.append(cfg["imlist"][img_id]) ranks_fnames_qs.append(ranks_fname_per_q) compute_map_and_print(dataset, ranks, cfg['gnd']) compute_map_and_print_top_k(dataset, ranks_fnames_qs, cfg['gnd'], cfg["imlist"]) sys.exit() with open(dataset + "_gl18_tl_resnet101_gem_w_m.pkl", "wb") as f: data = {"ranks": ranks, "db_images": images, "q_images": qimages} pickle.dump(data, f) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start)))
def test(datasets, net): print('>> Evaluating network on test datasets...') # for testing we use image size of max 1024 image_size = 1024 # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening if args.test_whiten: start = time.time() print('>> {}: Learning whitening...'.format(args.test_whiten)) # loading db db_root = os.path.join(get_data_root(), 'train', args.test_whiten) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(args.test_whiten)) wvecs = extract_vectors(net, images, image_size, transform, print_freq=10, batchsize=20) # implemented with torch.no_grad # learning whitening print('>> {}: Learning...'.format(args.test_whiten)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} print('>> {}: elapsed time: {}'.format(args.test_whiten, htime(time.time() - start))) else: Lw = None # evaluate on test datasets datasets = args.test_datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])] if dataset == 'cdvs_test_retrieval': bbxs = None else: bbxs = None print('>> {}: database images...'.format(dataset)) if args.pool == 'gem': ms = [1, 1 / 2**(1 / 2), 1 / 2] else: ms = [1] if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[ 'regional'] and not net.meta['whitening']: msp = net.pool.p.item() print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms)) print(">>>> msp: {}".format(msp)) else: msp = 1 vecs = extract_vectors(net, images, image_size, transform, bbxs, ms=ms, msp=msp, print_freq=1000, batchsize=1) # implemented with torch.no_grad print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, image_size, transform, bbxs, ms=ms, msp=msp, print_freq=1000, batchsize=1) # implemented with torch.no_grad print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() # search, rank, and print scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) if dataset == 'cdvs_test_retrieval': compute_map_and_print(dataset, ranks, cfg['gnd_id']) else: compute_map_and_print(dataset, ranks, cfg['gnd']) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P']) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P']) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd']) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start)))
def test(args, config, model, rank=None, world_size=None, **varargs): log_debug('Evaluating network on test datasets...') # Eval mode model.eval() data_config = config["dataloader"] # Average score avg_score = 0.0 # Evaluate on test datasets list_datasets = data_config.getstruct("test_datasets") if data_config.get("multi_scale"): scales = eval(data_config.get("multi_scale")) else: scales = [1] for dataset in list_datasets: start = time.time() log_debug('{%s}: Loading Dataset', dataset) # Prepare database db = ParisOxfordTestDataset(root_dir=path.join(args.data, 'test', dataset), name=dataset) batch_size = data_config.getint("test_batch_size") with torch.no_grad(): """ Paris and Oxford are : 1 - resized to a ratio of desired max size, after bbx cropping 2 - normalized after that 3 - not flipped and not scaled (!! important for evaluation) """ # Prepare query loader log_debug('{%s}: Extracting descriptors for query images', dataset) query_tf = ISSTestTransform( shortest_size=data_config.getint("test_shortest_size"), longest_max_size=data_config.getint("test_longest_max_size"), random_scale=data_config.getstruct("random_scale")) query_data = ISSDataset(root_dir='', name="query", images=db['query_names'], bbx=db['query_bbx'], transform=query_tf) query_sampler = DistributedARBatchSampler( data_source=query_data, batch_size=data_config.getint("test_batch_size"), num_replicas=world_size, rank=rank, drop_last=True, shuffle=False) query_dl = torch.utils.data.DataLoader( query_data, batch_sampler=query_sampler, collate_fn=iss_collate_fn, pin_memory=True, num_workers=data_config.getstruct("num_workers"), shuffle=False) # Extract query vectors qvecs = torch.zeros(varargs["output_dim"], len(query_data)).cuda() for it, batch in tqdm(enumerate(query_dl), total=len(query_dl)): # Upload batch batch = { k: batch[k].cuda(device=varargs["device"], non_blocking=True) for k in INPUTS } _, pred = model(**batch, scales=scales, do_prediction=True, do_augmentaton=False) distributed.barrier() qvecs[:, it * batch_size:(it + 1) * batch_size] = pred["ret_pred"] del pred # Prepare negative database data loader log_debug('{%s}: Extracting descriptors for database images', dataset) database_tf = ISSTestTransform( shortest_size=data_config.getint("test_shortest_size"), longest_max_size=data_config.getint("test_longest_max_size"), random_scale=data_config.getstruct("random_scale")) database_data = ISSDataset(root_dir='', name="database", images=db['img_names'], transform=database_tf) database_sampler = DistributedARBatchSampler( data_source=database_data, batch_size=data_config.getint("test_batch_size"), num_replicas=world_size, rank=rank, drop_last=True, shuffle=False) database_dl = torch.utils.data.DataLoader( database_data, batch_sampler=database_sampler, collate_fn=iss_collate_fn, pin_memory=True, num_workers=data_config.getstruct("num_workers"), shuffle=False) # Extract negative pool vectors database_vecs = torch.zeros(varargs["output_dim"], len(database_data)).cuda() for it, batch in tqdm(enumerate(database_dl), total=len(database_dl)): # Upload batch batch = { k: batch[k].cuda(device=varargs["device"], non_blocking=True) for k in INPUTS } _, pred = model(**batch, scales=scales, do_prediction=True, do_augmentaton=False) distributed.barrier() database_vecs[:, it * batch_size:(it + 1) * batch_size] = pred["ret_pred"] del pred # Compute dot product scores and ranks on GPU # scores = torch.mm(database_vecs.t(), qvecs) # scores, scores_indices = torch.sort(-scores, dim=0, descending=False) # convert to numpy qvecs = qvecs.cpu().numpy() database_vecs = database_vecs.cpu().numpy() # search, rank, and print scores = np.dot(database_vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) score = compute_map_and_print(dataset, ranks, db['gnd'], log_info) log_info('{%s}: Running time = %s', dataset, htime(time.time() - start)) avg_score += 0.5 * score["mAP"] # As Evaluation metrics log_info('Average score = %s', avg_score) return avg_score
def main(): args = parser.parse_args() # check if there are unknown datasets # for dataset in args.datasets.split(','): # if dataset not in datasets_names: # raise ValueError('Unsupported or unknown dataset: {}!'.format(dataset)) # check if test dataset are downloaded # and download if they are not # download_train(get_data_root()) # download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path #datasets = args.datasets.split(',') for dataset in datasets_names: start = time.time() print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join('/data', 'test')) images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])] global_feature_dict, gloabal_feature_size = build_global_feature_dict( '/home/ubuntu/DELG/extract/roxf5k.delf.global', 'global_features') # # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_feature(global_feature_dict, images, gloabal_feature_size) print('>> {}: query images...'.format(dataset)) qvecs = extract_feature(global_feature_dict, qimages, gloabal_feature_size) print('>> {}: Evaluating...'.format(dataset)) # search, rank, and print # using cosine similarity of two vectors scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset, ranks, cfg['gnd']) feature_location, feature_descriptor = build_local_feature_dict( '/home/ubuntu/DELG/extract/roxf5k.delf.local') new_ranks = [] #np.empty_like(ranks) # for i, qimage in enumerate(qimages): # new_ranks[:, i] = RerankByGeometricVerification(i, ranks[:, i], scores[:, i], qimage, # images, feature_location, # feature_descriptor, []) from functools import partial re_rank_func = partial(RerankByGeometricVerification, input_ranks=ranks, initial_scores=scores, query_name=qimages, index_names=images, feature_location=feature_location, feature_descriptor=feature_descriptor, junk_ids=[]) new_ranks = p_map(re_rank_func, range(len(qimages))) new_ranks = np.concatenate(new_ranks, axis=0) compute_map_and_print(dataset, new_ranks, cfg['gnd']) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start)))
def main(): args = parser.parse_args() # check if there are unknown datasets for dataset in args.datasets.split(','): if dataset not in datasets_names: raise ValueError( 'Unsupported or unknown dataset: {}!'.format(dataset)) # check if test dataset are downloaded # and download if they are not download_train(get_data_root()) download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained networks (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks')) else: # fine-tuned network from path state = torch.load(args.network_path) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get( 'local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False # load network net = init_network(net_params) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: # parse off-the-shelf parameters offtheshelf = args.network_offtheshelf.split('-') net_params = {} net_params['architecture'] = offtheshelf[0] net_params['pooling'] = offtheshelf[1] net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:] net_params['regional'] = 'reg' in offtheshelf[2:] net_params['whitening'] = 'whiten' in offtheshelf[2:] net_params['pretrained'] = True # load off-the-shelf network print(">> Loading off-the-shelf network:\n>>>> '{}'".format( args.network_offtheshelf)) net = init_network(net_params) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = list(eval(args.multiscale)) if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[ 'regional'] and not net.meta['whitening']: msp = net.pool.p.item() print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms)) print(">>>> msp: {}".format(msp)) else: msp = 1 # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) if len(ms) > 1: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: # if we evaluate networks from path we should save/load whitening # not to compute it every time if args.network_path is not None: whiten_fn = args.network_path + '_{}_whiten'.format( args.whitening) if len(ms) > 1: whiten_fn += '_ms' whiten_fn += '.pth' else: whiten_fn = None if whiten_fn is not None and os.path.isfile(whiten_fn): print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) Lw = torch.load(whiten_fn) else: print('>> {}: Learning whitening...'.format(args.whitening)) # loading db db_root = os.path.join(get_data_root(), 'train', args.whitening) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(args.whitening)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} # saving whitening if whiten_fn exists if whiten_fn is not None: print('>> {}: Saving to {}...'.format( args.whitening, whiten_fn)) torch.save(Lw, whiten_fn) print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start))) else: Lw = None # evaluate on test datasets datasets = args.datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) # extract database and query vectors print('>> {}: database images...'.format(dataset)) images = get_imlist("E:\\PycharmProjects\\image-retrieval\\holiday2\\") names = [] for i, img_path in enumerate(images): img_name = os.path.split(img_path)[1] print(img_name) names.append(img_name) # prepare config structure for the test dataset # cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) # images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] # try: # bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] # except: # bbxs = None # for holidaysmanrot and copydays # names = [] # for i, img_path in enumerate(images): # img_name = os.path.split(img_path)[1] # print(img_name) # names.append(img_name) # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp) # convert to numpy vecs = vecs.numpy() vecs = vecs.T print("--------------------------------------------------") print(" writing feature extraction results ...") print("--------------------------------------------------") output = "gem_res_holiday_3.h5" h5f = h5py.File(output, 'w') h5f.create_dataset('dataset_1', data=vecs) h5f.create_dataset('dataset_2', data=np.string_(names)) h5f.close() print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start)))
def main(): args = parser.parse_args() # check if there are unknown datasets for scene in args.scenes.split(','): if scene not in datasets_names: raise ValueError('Unsupported or unknown scene: {}!'.format(scene)) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network # pretrained networks (downloaded automatically) print(">> Loading network:\n>>>> '{}'".format(args.network)) state = load_url(PRETRAINED[args.network], model_dir=os.path.join(get_data_root(), 'networks')) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get('local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False # network initialization net = init_network(net_params) net.load_state_dict(state['state_dict']) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = list(eval(args.multiscale)) print(">>>> Evaluating scales: {}".format(ms)) # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # evaluate on test datasets scenes = args.scenes.split(',') for scene in scenes: start = time.time() print('>> {}: Extracting...'.format(scene)) img_path = osp.join(args.data_path, scene, "images") images = [ osp.join(img_path, fname) for fname in os.listdir(img_path) if fname[-3:].lower() in ['jpg', 'png'] ] # extract vectors vecs = extract_vectors(net, images, args.image_size, transform, ms=ms) print('>> {}: Evaluating...'.format(scene)) # convert to numpy vecs = vecs.numpy() # search, rank, and print scores = np.dot(vecs.T, vecs) ranks = np.argsort(-scores, axis=0) images = [img.split('/')[-1] for img in images] for top_k in list(eval(args.top_n)): pairs = [] for q_id in range(len(images)): img_q = images[q_id] pairs_per_q = [ " ".join([img_q, images[db_id]]) for db_id in list(ranks[1:top_k + 1, q_id]) ] pairs += pairs_per_q with open( osp.join(args.data_path, scene, "image_pairs_" + str(top_k) + ".txt"), "w") as f: for pair in pairs: f.write(pair + "\n") print('>> {}: elapsed time: {}'.format(scene, htime(time.time() - start)))
def test(datasets, net, wandb_enabled=False, epoch=-1): global global_step print('>> Evaluating network on test datasets...') # for testing we use image size of max 1024 image_size = 1024 # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize( mean=net.meta['mean'], std=net.meta['std'] ) transform = transforms.Compose([ transforms.ToTensor(), normalize ]) # compute whitening if args.test_whiten: start = time.time() print('>> {}: Learning whitening...'.format(args.test_whiten)) # loading db db_root = os.path.join(get_data_root(), 'train', args.test_whiten) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten)) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))] # extract whitening vectors print('>> {}: Extracting...'.format(args.test_whiten)) wvecs = extract_vectors(net, images, image_size, transform) # implemented with torch.no_grad # learning whitening print('>> {}: Learning...'.format(args.test_whiten)) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} print('>> {}: elapsed time: {}'.format(args.test_whiten, htime(time.time()-start))) else: Lw = None # evaluate on test datasets datasets = args.test_datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])] bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, image_size, transform) # implemented with torch.no_grad print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, image_size, transform, bbxs) # implemented with torch.no_grad print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() # search, rank, and print scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset, ranks, cfg['gnd'], wandb_enabled=wandb_enabled, epoch=epoch, global_step=global_step) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P']) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P']) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks = np.argsort(-scores, axis=0) compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'], wandb_enabled=wandb_enabled, epoch=epoch, global_step=global_step) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
wvecs = np.hstack((vecs, qvecs)) # learning whitening print('>> {}: Learning...'.format(whitening)) m, P = pcawhitenlearn(wvecs) Lw = {'m': m, 'P': P} del wvecs gc.collect() # saving whitening if whiten_fn exists if whiten_fn is not None: whiten_fn = os.path.join( get_data_root(), 'whiten', 'R101_FC_GL_362_IS1024_MS1,0.707,1.414.pth') print('>> {}: Saving to {}...'.format(whitening, whiten_fn)) torch.save(Lw, whiten_fn) print('>> {}: elapsed time: {}'.format(whitening, htime(time.time() - start))) else: Lw = None #%% print('>> apply PCA whiten...') if Lw is not None: # whiten the vectors and shrinkage split_num = 4 for i in range(split_num): vecs_lw_temp = np.dot( Lw['P'], vecs[:, int(vecs.shape[1] / split_num * i):int(vecs.shape[1] / split_num * (i + 1))] - Lw['m']) if i == 0:
def testOxfordParisHolidays(net, eConfig): #datasets = eConfig['test-datasets'].split(',') #results = [] # #for dataset in datasets: # results.append((dataset, np.random.rand(1)[0])) # #return results print('>> Evaluating network on test datasets...') # for testing we use image size of max 1024 image_size = 1024 # setting up the multi-scale parameters ms = [1] msp = 1 if (eConfig['multiscale']): ms = [1, 1. / math.sqrt(2), 1. / 2] if net.meta['pooling'] == 'gem' and net.whiten is None: msp = net.pool.p.data.tolist()[0] # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # compute whitening if eConfig['whitening']: start = time.time() print('>> {}: Learning whitening...'.format(eConfig['test-whiten'])) # loading db db_root = os.path.join(get_data_root(), 'train', eConfig['test-whiten']) ims_root = os.path.join(db_root, 'ims') db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(eConfig['test-whiten'])) with open(db_fn, 'rb') as f: db = pickle.load(f) images = [ cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids'])) ] # extract whitening vectors print('>> {}: Extracting...'.format(eConfig['test-whiten'])) wvecs = extract_vectors(net, images, image_size, transform, ms=ms, msp=msp) # learning whitening print('>> {}: Learning...'.format(eConfig['test-whiten'])) wvecs = wvecs.numpy() m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs']) Lw = {'m': m, 'P': P} print('>> {}: elapsed time: {}'.format(eConfig['test-whiten'], htime(time.time() - start))) else: Lw = None # evaluate on test datasets datasets = eConfig['test-datasets'].split(',') results = [] for dataset in datasets: start = time.time() if (dataset != 'holidays' and dataset != 'rholidays'): print('>> {}: Extracting...'.format(dataset)) # prepare config structure for the test dataset cfg = configdataset(dataset, os.path.join(get_data_root(), 'test')) images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])] qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])] bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])] if (dataset == 'oxford105k' or dataset == 'paris106k'): images.extend(cfg['distractors']) # extract database and query vectors print('>> {}: database images...'.format(dataset)) vecs = extract_vectors(net, images, image_size, transform, ms=ms, msp=msp) print('>> {}: query images...'.format(dataset)) qvecs = extract_vectors(net, qimages, image_size, transform, bbxs, ms=ms, msp=msp) print('>> {}: Evaluating...'.format(dataset)) # convert to numpy vecs = vecs.numpy() qvecs = qvecs.numpy() # search, rank, and print scores = np.dot(vecs.T, qvecs) ranks = np.argsort(-scores, axis=0) results.append( compute_map_and_print( dataset + ('+ multiscale' if eConfig['multiscale'] else ''), ranks, cfg['gnd'])) if Lw is not None: # whiten the vectors vecs_lw = whitenapply(vecs, Lw['m'], Lw['P']) qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P']) # search, rank, and print scores = np.dot(vecs_lw.T, qvecs_lw) ranks = np.argsort(-scores, axis=0) results.append( compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])) else: results.append(testHolidays(net, eConfig, dataset, Lw)) print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start))) return results
def main(): args = parser.parse_args() # check if there are unknown datasets for dataset in args.datasets.split(','): if dataset not in datasets_names: raise ValueError( 'Unsupported or unknown dataset: {}!'.format(dataset)) # check if test dataset are downloaded # and download if they are not # download_train(get_data_root()) # download_test(get_data_root()) # setting up the visible GPU os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id # loading network from path if args.network_path is not None: print(">> Loading network:\n>>>> '{}'".format(args.network_path)) if args.network_path in PRETRAINED: # pretrained networks (downloaded automatically) state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks')) else: # fine-tuned network from path state = torch.load(args.network_path) # parsing net params from meta # architecture, pooling, mean, std required # the rest has default values, in case that is doesnt exist net_params = {} net_params['architecture'] = state['meta']['architecture'] net_params['pooling'] = state['meta']['pooling'] net_params['local_whitening'] = state['meta'].get( 'local_whitening', False) net_params['regional'] = state['meta'].get('regional', False) net_params['whitening'] = state['meta'].get('whitening', False) net_params['mean'] = state['meta']['mean'] net_params['std'] = state['meta']['std'] net_params['pretrained'] = False # load network net = init_network(net_params) net.load_state_dict(state['state_dict']) # if whitening is precomputed if 'Lw' in state['meta']: net.meta['Lw'] = state['meta']['Lw'] print(">>>> loaded network: ") print(net.meta_repr()) # loading offtheshelf network elif args.network_offtheshelf is not None: # parse off-the-shelf parameters offtheshelf = args.network_offtheshelf.split('-') net_params = {} net_params['architecture'] = offtheshelf[0] net_params['pooling'] = offtheshelf[1] net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:] net_params['regional'] = 'reg' in offtheshelf[2:] net_params['whitening'] = 'whiten' in offtheshelf[2:] net_params['pretrained'] = True # load off-the-shelf network print(">> Loading off-the-shelf network:\n>>>> '{}'".format( args.network_offtheshelf)) net = init_network(net_params) print(">>>> loaded network: ") print(net.meta_repr()) # setting up the multi-scale parameters ms = list(eval(args.multiscale)) if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[ 'regional'] and not net.meta['whitening']: msp = net.pool.p.item() print(">> Set-up multiscale:") print(">>>> ms: {}".format(ms)) print(">>>> msp: {}".format(msp)) else: msp = 1 # moving network to gpu and eval mode net.cuda() net.eval() # set up the transform normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std']) transform = transforms.Compose([transforms.ToTensor(), normalize]) # evaluate on test datasets datasets = args.datasets.split(',') for dataset in datasets: start = time.time() print('>> {}: Extracting...'.format(dataset)) print('>> Prepare data information...') index_file_path = os.path.join(get_data_root(), 'index.csv') index_mark_path = os.path.join(get_data_root(), 'index_mark.csv') index_miss_path = os.path.join(get_data_root(), 'index_miss.csv') test_file_path = os.path.join(get_data_root(), 'test.csv') test_mark_path = os.path.join(get_data_root(), 'test_mark.csv') test_mark_add_path = os.path.join(get_data_root(), 'test_mark_add.csv') test_miss_path = os.path.join(get_data_root(), 'test_miss.csv') if dataset == 'google-landmarks-dataset': index_img_path = os.path.join(get_data_root(), 'index') test_img_path = os.path.join(get_data_root(), 'google-landmarks-dataset-test') elif dataset == 'google-landmarks-dataset-resize': index_img_path = os.path.join(get_data_root(), 'resize_index_image') test_img_path = os.path.join(get_data_root(), 'resize_test_image') if not (os.path.isfile(index_mark_path) or os.path.isfile(index_miss_path)): clear_no_exist(index_file_path, index_mark_path, index_miss_path, index_img_path) if not (os.path.isfile(test_mark_path) or os.path.isfile(test_miss_path)): clear_no_exist(test_file_path, test_mark_path, test_miss_path, test_img_path) print('>> load index image path...') retrieval_other_dataset = '/home/iap205/Datasets/google-landmarks-dataset-resize' csvfile = open(index_mark_path, 'r') csvreader = csv.reader(csvfile) images = [] miss, add = 0, 0 for line in csvreader: if line[0] == '1': images.append(os.path.join(index_img_path, line[1] + '.jpg')) elif line[0] == '0': retrieval_img_path = os.path.join(retrieval_other_dataset, 'resize_index_image', line[1] + '.jpg') if os.path.isfile(retrieval_img_path): images.append(retrieval_img_path) add += 1 miss += 1 csvfile.close() print( '>>>> index image miss: {}, supplement: {}, still miss: {}'.format( miss, add, miss - add)) print('>> load query image path...') csvfile = open(test_mark_path, 'r') csvreader = csv.reader(csvfile) savefile = open(test_mark_add_path, 'w') save_writer = csv.writer(savefile) qimages = [] miss, add = 0, 0 for line in csvreader: if line[0] == '1': qimages.append(os.path.join(test_img_path, line[1] + '.jpg')) save_writer.writerow(line) elif line[0] == '0': retrieval_img_path = os.path.join(retrieval_other_dataset, 'resize_test_image', line[1] + '.jpg') if os.path.isfile(retrieval_img_path): qimages.append(retrieval_img_path) save_writer.writerow(['1', line[1]]) add += 1 else: save_writer.writerow(line) miss += 1 csvfile.close() savefile.close() print( '>>>> test image miss: {}, supplement: {}, still miss: {}'.format( miss, add, miss - add)) # extract index vectors print('>> {}: index images...'.format(dataset)) split_num = 6 extract_num = int(len(images) / split_num) num_list = list(range(0, len(images), extract_num)) num_list.append(len(images)) # k = 0 # print('>>>> extract part {} of {}'.format(k, split_num-1)) # vecs = extract_vectors(net, images[num_list[k]:num_list[k+1]], args.image_size, transform, ms=ms, msp=msp) # vecs = vecs.numpy() # print('>>>> save index vecs to pkl...') # vecs_file_path = os.path.join(get_data_root(), 'index_vecs{}_of_{}.pkl'.format(k+1, split_num)) # vecs_file = open(vecs_file_path, 'wb') # pickle.dump(vecs[:, num_list[k]:num_list[k+1]], vecs_file) # vecs_file.close() # print('>>>> index_vecs{}_of_{}.pkl save done...'.format(k+1, split_num)) for i in range(split_num): # vecs_temp = np.loadtxt(open(os.path.join(get_data_root(), 'index_vecs{}_of_{}.csv'.format(i+1, split_num)), "rb"), # delimiter=",", skiprows=0) with open( os.path.join( get_data_root(), 'index_vecs{}_of_{}.pkl'.format(i + 1, split_num)), 'rb') as f: vecs_temp = pickle.load(f) if i == 0: vecs = vecs_temp else: vecs = np.hstack((vecs, vecs_temp[:, :])) del vecs_temp gc.collect() print('\r>>>> index_vecs{}_of_{}.pkl load done...'.format( i + 1, split_num), end='') print('') # extract query vectors print('>> {}: query images...'.format(dataset)) split_num = 1 extract_num = int(len(qimages) / split_num) num_list = list(range(0, len(qimages), extract_num)) num_list.append(len(qimages)) # k = 0 # print('>>>> extract part {} of {}'.format(k, split_num - 1)) # qvecs = extract_vectors(net, qimages[num_list[k]:num_list[k + 1]], args.image_size, transform, ms=ms, msp=msp) # qvecs = qvecs.numpy() # for i in range(split_num): # qvecs_file_path = os.path.join(get_data_root(), 'test_vecs{}_of_{}.pkl'.format(i+1, split_num)) # qvecs_file = open(qvecs_file_path, 'wb') # pickle.dump(qvecs[:, num_list[i]:num_list[i+1]], qvecs_file) # qvecs_file.close() # print('\r>>>> test_vecs{}_of_{}.pkl save done...'.format(i+1, split_num), end='') # print('') for i in range(split_num): # qvecs_temp = np.loadtxt(open(os.path.join(get_data_root(), 'test_vecs{}_of_{}.csv'.format(i+1, split_num)), "rb"), # delimiter=",", skiprows=0) with open( os.path.join( get_data_root(), 'test_vecs{}_of_{}.pkl'.format(i + 1, split_num)), 'rb') as f: qvecs_temp = pickle.load(f) if i == 0: qvecs = qvecs_temp else: qvecs = np.hstack((qvecs, qvecs_temp[:, :])) del qvecs_temp gc.collect() print('\r>>>> test_vecs{}_of_{}.pkl load done...'.format( i + 1, split_num), end='') print('') # vecs = np.zeros((2048, 1093278)) # qvecs = np.zeros((2048, 115921)) # save vecs to csv file # np.savetxt(os.path.join(get_data_root(), 'index_vecs{}_of_{}.csv'.format(k, split_num-1)), vecs, delimiter=',') # np.savetxt(os.path.join(get_data_root(), 'test_vecs{}_of_{}.csv'.format(k, split_num-1)), qvecs, delimiter=',') # compute whitening if args.whitening is not None: start = time.time() if 'Lw' in net.meta and args.whitening in net.meta['Lw']: print('>> {}: Whitening is precomputed, loading it...'.format( args.whitening)) if len(ms) > 1: Lw = net.meta['Lw'][args.whitening]['ms'] else: Lw = net.meta['Lw'][args.whitening]['ss'] else: # if we evaluate networks from path we should save/load whitening # not to compute it every time if args.network_path is not None: whiten_fn = args.network_path + '_{}_whiten'.format( args.whitening) if len(ms) > 1: whiten_fn += '_ms' whiten_fn += '.pth' else: whiten_fn = None if whiten_fn is not None and os.path.isfile(whiten_fn): print('>> {}: Whitening is precomputed, loading it...'. format(args.whitening)) Lw = torch.load(whiten_fn) else: print('>> {}: Learning whitening...'.format( args.whitening)) # extract whitening vectors print('>> {}: Extracting...'.format(args.whitening)) wvecs = vecs # learning whitening print('>> {}: Learning...'.format(args.whitening)) m, P = pcawhitenlearn(wvecs) Lw = {'m': m, 'P': P} # saving whitening if whiten_fn exists if whiten_fn is not None: print('>> {}: Saving to {}...'.format( args.whitening, whiten_fn)) torch.save(Lw, whiten_fn) print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start))) else: Lw = None print('>> apply PCAwhiten...') if Lw is not None: # whiten the vectors and shrinkage vecs = whitenapply(vecs, Lw['m'], Lw['P']) qvecs = whitenapply(qvecs, Lw['m'], Lw['P']) print('>>>> save index PCAwhiten vecs to pkl...') split_num = 6 extract_num = int(len(images) / split_num) num_list = list(range(0, len(images), extract_num)) num_list.append(len(images)) for i in range(split_num): vecs_file_path = os.path.join( get_data_root(), 'index_PCAwhiten_vecs{}_of_{}.pkl'.format(i + 1, split_num)) vecs_file = open(vecs_file_path, 'wb') pickle.dump(vecs[:, num_list[i]:num_list[i + 1]], vecs_file) vecs_file.close() print( '\r>>>> index_PCAwhiten_vecs{}_of_{}.pkl save done...'.format( i + 1, split_num), end='') print('') print('>>>> save test PCAwhiten vecs to pkl...') split_num = 1 extract_num = int(len(qimages) / split_num) num_list = list(range(0, len(qimages), extract_num)) num_list.append(len(images)) for i in range(split_num): qvecs_file_path = os.path.join( get_data_root(), 'test_PCAwhiten_vecs{}_of_{}.pkl'.format(i + 1, split_num)) qvecs_file = open(qvecs_file_path, 'wb') pickle.dump(qvecs[:, num_list[i]:num_list[i + 1]], qvecs_file) qvecs_file.close() print('\r>>>> test_PCAwhiten_vecs{}_of_{}.pkl save done...'.format( i + 1, split_num), end='') print('') print('>>>> load index PCAwhiten vecs from pkl...') for i in range(split_num): with open( os.path.join( get_data_root(), 'index_PCAwhiten_vecs{}_of_{}.pkl'.format( i + 1, split_num)), 'rb') as f: vecs_temp = pickle.load(f) if i == 0: vecs = vecs_temp else: vecs = np.hstack((vecs, vecs_temp[:, :])) del vecs_temp gc.collect() print( '\r>>>> index_PCAwhiten_vecs{}_of_{}.pkl load done...'.format( i + 1, split_num), end='') print('') print('>>>> load test PCAwhiten vecs from pkl...') for i in range(split_num): with open( os.path.join( get_data_root(), 'test_PCAwhiten_vecs{}_of_{}.pkl'.format( i + 1, split_num)), 'rb') as f: qvecs_temp = pickle.load(f) if i == 0: qvecs = qvecs_temp else: qvecs = np.hstack((qvecs, qvecs_temp[:, :])) del qvecs_temp gc.collect() print('\r>>>> test_PCAwhiten_vecs{}_of_{}.pkl load done...'.format( i + 1, split_num), end='') print('') # extract principal components and dimension shrinkage ratio = 0.8 vecs = vecs[:int(vecs.shape[0] * ratio), :] qvecs = vecs[:int(qvecs.shape[0] * ratio), :] print('>> {}: Evaluating...'.format(dataset)) split_num = 50 top_num = 100 vecs_T = np.zeros((vecs.shape[1], vecs.shape[0])).astype('float32') vecs_T[:] = vecs.T[:] QE_iter = 0 QE_weight = (np.arange(top_num, 0, -1) / top_num).reshape( 1, top_num, 1) print('>> find {} nearest neighbour...'.format(top_num)) import faiss # place it in the file top will cause network load so slowly # ranks_top_100 = np.loadtxt(open(os.path.join(get_data_root(), 'ranks_top_{}.csv'.format(top_num)), "rb"), # delimiter=",", skiprows=0).astype('int') for iter in range(0, QE_iter + 1): if iter != 0: # ranks_top_100 = np.ones((100, 115921)).astype('int') print('>> Query expansion iteration {}'.format(iter)) ranks_split = 50 for i in range(ranks_split): ranks_top_100_split = ranks_top_100[:, int(ranks_top_100. shape[1] / ranks_split * i ):int(ranks_top_100 .shape[1] / ranks_split * (i + 1))] top_100_vecs = vecs[:, ranks_top_100_split] # (2048, 100, query_split_size) qvecs_temp = (top_100_vecs * QE_weight).sum(axis=1) qvecs_temp = qvecs_temp / (np.linalg.norm( qvecs_temp, ord=2, axis=0, keepdims=True) + 1e-6) if i == 0: qvecs = qvecs_temp else: qvecs = np.hstack((qvecs, qvecs_temp)) del ranks_top_100_split, top_100_vecs, qvecs_temp gc.collect() print('\r>>>> calculate new query vectors {}/{} done...'. format(i + 1, ranks_split), end='') print('') qe_iter_qvecs_path = os.path.join( get_data_root(), 'QE_iter{}_qvecs.pkl'.format(iter)) qe_iter_qvecs_file = open(qe_iter_qvecs_path, 'wb') pickle.dump(qvecs, qe_iter_qvecs_file) qe_iter_qvecs_file.close() print('>>>> QE_iter{}_qvecs.pkl save done...'.format(iter)) del ranks_top_100 gc.collect() for i in range(split_num): # scores = np.dot(vecs.T, qvecs[:, int(qvecs.shape[1]/split_num*i):int(qvecs.shape[1]/split_num*(i+1))]) # ranks = np.argsort(-scores, axis=0) # kNN search k = top_num index = faiss.IndexFlatL2(vecs.shape[0]) index.add(vecs_T) query_vecs = qvecs[:, int(qvecs.shape[1] / split_num * i):int(qvecs.shape[1] / split_num * (i + 1))] qvecs_T = np.zeros((query_vecs.shape[1], query_vecs.shape[0])).astype('float32') qvecs_T[:] = query_vecs.T[:] _, ranks = index.search(qvecs_T, k) ranks = ranks.T if i == 0: ranks_top_100 = ranks[:top_num, :] else: ranks_top_100 = np.hstack( (ranks_top_100, ranks[:top_num, :])) # del scores, ranks del index, query_vecs, qvecs_T, ranks gc.collect() print('\r>>>> kNN search {} nearest neighbour {}/{} done...'. format(top_num, i + 1, split_num), end='') del qvecs gc.collect() print('') del vecs, vecs_T gc.collect() # save to csv file print(">> save to submission.csv file...") submission_file = open(os.path.join(get_data_root(), 'submission.csv'), 'w') writer = csv.writer(submission_file) test_mark_file = open(test_mark_add_path, 'r') csvreader = csv.reader(test_mark_file) cnt = 0 writer.writerow(['id', 'images']) for index, line in enumerate(csvreader): (flag, img_name) = line[:2] if flag == '1': select = [] for i in range(top_num): select.append(images[int( ranks_top_100[i, cnt])].split('/')[-1].split('.jpg')[0]) cnt += 1 writer.writerow([ img_name.split('/')[-1].split('.jpg')[0], ' '.join(select) ]) else: # random_list = random.sample(range(0, len(images)), top_num) random_list = np.random.choice(len(images), top_num, replace=False) select = [] for i in range(top_num): select.append( images[random_list[i]].split('/')[-1].split('.jpg')[0]) writer.writerow([ img_name.split('/')[-1].split('.jpg')[0], ' '.join(select) ]) if cnt % 10 == 0 or cnt == len(qimages): print('\r>>>> {}/{} done...'.format(cnt, len(qimages)), end='') submission_file.close() test_mark_file.close() print('') print('>> {}: elapsed time: {}'.format(dataset, htime(time.time() - start)))