def __init__(self, logging=True): self.dataset = None self.session = None self.header = None self.isSess = False if logging: self.log = open('./log/' + date() + '.log', 'a') else: self.log = None
def __init__(self, split=0.7, logging=True, random_state=None): self.dataset = None self.session = None self.train_dataset = None self.test_dataset = None self.train_session = None self.test_session = None self.flows = None self.train_flows = None self.test_flows = None self.split_ratio = split self.train_size = None self.seed = random_state self.skip_datas = [] use_cores = multiprocessing.cpu_count() // 3 * 2 self.pclf = RandomForestClassifier(n_jobs=use_cores, random_state=random_state) self.sclf = RandomForestClassifier(n_jobs=use_cores, random_state=random_state) self.le = LabelEncoder() self.pscaler = MinMaxScaler() self.sscaler = MinMaxScaler() self.spreds_train = None self.spreds_test = None self.sprobs_train = None self.sprobs_train_all = None self.sprobs_test = None self.sprobs_test_all = None self.ppreds_train = None self.ppreds_test = None self.pprobs_train = None self.pprobs_train_all = None self.pprobs_test = None self.pprobs_test_all = None self.pkt_train_ptime_mean = None self.pkt_test_ptime_mean = None if logging: self.log = open('/tf/md0/thkim/log/' + date() + '.log', 'a') else: self.log = None
def __init__(self, h_threshold=1.0, random_state=None, verbose=True): self.ppreds = None self.pprobs = None self.spreds = None self.sprobs = None self.flows = None self.classes = None self.y_true = None self.h_threshold = h_threshold self.l_threshold = None self.init_th = None self.step = None self.isInit = False self.delta = None self.verbose = verbose np.random.seed(random_state) if verbose: self.log = open('./log/' + date() + '.log', 'a') else: self.log = None
def __init__(self, split=0.7, clf='rf', logging=True, random_state=None): self.train_dataset = None self.test_dataset = None self.split_ratio = split self.train_size = None self.seed = random_state self.skip_datas = [] np.random.seed(random_state) use_cores = multiprocessing.cpu_count() // 4 * 3 if clf == 'rf': self.sclf = RandomForestClassifier(n_jobs=use_cores, random_state=random_state) elif clf == 'dt': self.sclf = DecisionTreeClassifier(random_state=random_state) elif clf == 'et': self.sclf = ExtraTreeClassifier(random_state=random_state) elif clf == 'adt': self.sclf = AdaBoostClassifier( base_estimator=DecisionTreeClassifier( random_state=random_state), random_state=random_state) elif clf == 'arf': self.sclf = AdaBoostClassifier( base_estimator=RandomForestClassifier( n_jobs=use_cores, random_state=random_state), random_state=random_state) elif clf == 'gbt': self.sclf = GradientBoostingClassifier(random_state=random_state) self.le = LabelEncoder() self.scaler = MinMaxScaler() self.spreds_train = None self.spreds_test = None if logging: self.log = open('./log/' + date() + '.log', 'a') else: self.log = None
def log_format(*args): strname = '[' + cktime.date() + ']' for arg in args[:-1]: strname = strname + '[' + arg + ']' strname = strname + args[-1] + '.log' return strname