def createInitialDatasets(): print "Creating data sets" t0 = time.time() datasetDict = {} dataFile = h5py.File(dataFileName, 'r') mapCoord['x1'] = len(dataFile['bed'][:][0]) mapCoord['y1'] = len(dataFile['bed'][:]) mapCoord['proj_x1'] = dataFile['x'][:][-1] mapCoord['proj_y1'] = dataFile['y'][:][-1] surfaceX = Dataset('surfaceGradX') surfaceY = Dataset('surfaceGradY') datasetDict['surfaceGradX'] = surfaceX datasetDict['surfaceGradY'] = surfaceY velocity = Dataset('velocity') datasetDict['velocity'] = velocity smb = Dataset('smb') datasetDict['smb'] = smb bed = Dataset('bed') datasetDict['bed'] = bed surface = Dataset('surface') datasetDict['surface'] = surface thickness = Dataset('thickness') datasetDict['thickness'] = thickness t2m = Dataset('t2m') datasetDict['t2m'] = t2m datasetDict['x'] = Dataset('x') datasetDict['y'] = Dataset('y') dataFile.close() print "Loaded all data sets in ", time.time() - t0, " seconds" return datasetDict
def test3(): d = sentences() literals = [] literals.append([d['not_a'], d['c']]) literals.append([d['not_b'], d['c']]) literals.append([d['a'], d['b']]) clauses = create_clauses(literals) not_observable_fact = [d['not_c']] not_observable_clause = Clause(not_observable_fact) clauses.append(not_observable_clause) dataset = Dataset(clauses) return dataset
def createInitialDataSets(): print "Creating data sets" t0 = time.time() datasetDict = {} """ Read in dimensions of bed at point of comment x = 1670, y = 2991 read in last values of x and y and map to the object map """ dataFile = h5py.File(dataFileName, 'r') map['x1'] = len(dataFile['bed'][:][0]) map['y1'] = len(dataFile['bed'][:]) map['proj_x1'] = dataFile['x'][:][-1] map['proj_y1'] = dataFile['y'][:][-1] velocity = Dataset('velocity', greenPlotPen) datasetDict['velocity'] = velocity smb = Dataset('smb', redPlotPen) datasetDict['smb'] = smb bed = Dataset('bed', bluePlotPen) datasetDict['bed'] = bed surface = Dataset('surface', greyPlotPen) datasetDict['surface'] = surface thickness = Dataset('thickness', orangePlotPen) datasetDict['thickness'] = thickness t2m = Dataset('t2m', tealPlotPen) datasetDict['t2m'] = t2m dataFile.close() print "Loaded all data sets in ", time.time() - t0, " seconds" return datasetDict
def __init__(self): super(DatasetGui, self).__init__() self.setWindowTitle("Pointing Gesture Recognition - Dataset recording") # Retrieve all settings self.settings = Settings() # Load sounds self.countdownSound = QtMultimedia.QSound( self.settings.getResourceFolder() + "countdown.wav") self.countdownEndedSound = QtMultimedia.QSound( self.settings.getResourceFolder() + "countdown-ended.wav") # Get the context and initialise it self.context = Context() self.context.init() # Create the depth generator to get the depth map of the scene self.depth = DepthGenerator() self.depth.create(self.context) self.depth.set_resolution_preset(RES_VGA) self.depth.fps = 30 # Create the image generator to get an RGB image of the scene self.image = ImageGenerator() self.image.create(self.context) self.image.set_resolution_preset(RES_VGA) self.image.fps = 30 # Create the user generator to detect skeletons self.user = UserGenerator() self.user.create(self.context) # Initialise the skeleton tracking skeleton.init(self.user) # Start generating self.context.start_generating_all() print "Starting to detect users.." # Create a new dataset item self.data = Dataset() # Create a timer for an eventual countdown before recording the data self.countdownTimer = QtCore.QTimer() self.countdownRemaining = 10 self.countdownTimer.setInterval(1000) self.countdownTimer.setSingleShot(True) self.countdownTimer.timeout.connect(self.recordCountdown) # Create a timer to eventually record data for a heat map self.heatmapRunning = False self.heatmapTimer = QtCore.QTimer() self.heatmapTimer.setInterval(10) self.heatmapTimer.setSingleShot(True) self.heatmapTimer.timeout.connect(self.recordHeatmap) # Create the global layout self.layout = QtWidgets.QVBoxLayout(self) # Create custom widgets to hold sensor's images self.depthImage = SensorWidget() self.depthImage.setGeometry(10, 10, 640, 480) # Add these custom widgets to the global layout self.layout.addWidget(self.depthImage) # Hold the label indicating the number of dataset taken self.numberLabel = QtWidgets.QLabel() self.updateDatasetNumberLabel() # Create the acquisition form elements self.createAcquisitionForm() # Register a dialog window to prompt the target position self.dialogWindow = DatasetDialog(self) # Allow to save the data when the right distance is reached self.recordIfReady = False # Create and launch a timer to update the images self.timerScreen = QtCore.QTimer() self.timerScreen.setInterval(30) self.timerScreen.setSingleShot(True) self.timerScreen.timeout.connect(self.updateImage) self.timerScreen.start()
class DatasetGui(QtWidgets.QWidget): utils = Utils() featureExtractor = FeatureExtractor() bpn = BPNHandler(True) accuracy = accuracy.Accuracy() # Constructor of the DatasetGui class # # @param None # @return None def __init__(self): super(DatasetGui, self).__init__() self.setWindowTitle("Pointing Gesture Recognition - Dataset recording") # Retrieve all settings self.settings = Settings() # Load sounds self.countdownSound = QtMultimedia.QSound( self.settings.getResourceFolder() + "countdown.wav") self.countdownEndedSound = QtMultimedia.QSound( self.settings.getResourceFolder() + "countdown-ended.wav") # Get the context and initialise it self.context = Context() self.context.init() # Create the depth generator to get the depth map of the scene self.depth = DepthGenerator() self.depth.create(self.context) self.depth.set_resolution_preset(RES_VGA) self.depth.fps = 30 # Create the image generator to get an RGB image of the scene self.image = ImageGenerator() self.image.create(self.context) self.image.set_resolution_preset(RES_VGA) self.image.fps = 30 # Create the user generator to detect skeletons self.user = UserGenerator() self.user.create(self.context) # Initialise the skeleton tracking skeleton.init(self.user) # Start generating self.context.start_generating_all() print "Starting to detect users.." # Create a new dataset item self.data = Dataset() # Create a timer for an eventual countdown before recording the data self.countdownTimer = QtCore.QTimer() self.countdownRemaining = 10 self.countdownTimer.setInterval(1000) self.countdownTimer.setSingleShot(True) self.countdownTimer.timeout.connect(self.recordCountdown) # Create a timer to eventually record data for a heat map self.heatmapRunning = False self.heatmapTimer = QtCore.QTimer() self.heatmapTimer.setInterval(10) self.heatmapTimer.setSingleShot(True) self.heatmapTimer.timeout.connect(self.recordHeatmap) # Create the global layout self.layout = QtWidgets.QVBoxLayout(self) # Create custom widgets to hold sensor's images self.depthImage = SensorWidget() self.depthImage.setGeometry(10, 10, 640, 480) # Add these custom widgets to the global layout self.layout.addWidget(self.depthImage) # Hold the label indicating the number of dataset taken self.numberLabel = QtWidgets.QLabel() self.updateDatasetNumberLabel() # Create the acquisition form elements self.createAcquisitionForm() # Register a dialog window to prompt the target position self.dialogWindow = DatasetDialog(self) # Allow to save the data when the right distance is reached self.recordIfReady = False # Create and launch a timer to update the images self.timerScreen = QtCore.QTimer() self.timerScreen.setInterval(30) self.timerScreen.setSingleShot(True) self.timerScreen.timeout.connect(self.updateImage) self.timerScreen.start() # Update the depth image displayed within the main window # # @param None # @return None def updateImage(self): # Update to next frame self.context.wait_and_update_all() # Extract informations of each tracked user self.data = skeleton.track(self.user, self.depth, self.data) # Get the whole depth map self.data.depth_map = np.asarray( self.depth.get_tuple_depth_map()).reshape(480, 640) # Create the frame from the raw depth map string and convert it to RGB frame = np.fromstring(self.depth.get_raw_depth_map_8(), np.uint8).reshape(480, 640) frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) # Get the RGB image of the scene self.data.image = np.fromstring(self.image.get_raw_image_map_bgr(), dtype=np.uint8).reshape(480, 640, 3) # Will be used to specify the depth of the current hand wished currentDepth, showCurrentDepth = 0, "" if len(self.user.users) > 0 and len(self.data.skeleton["head"]) > 0: # Highlight the head ui.drawPoint(frame, self.data.skeleton["head"][0], self.data.skeleton["head"][1], 5) # Display lines from elbows to the respective hands ui.drawElbowLine(frame, self.data.skeleton["elbow"]["left"], self.data.skeleton["hand"]["left"]) ui.drawElbowLine(frame, self.data.skeleton["elbow"]["right"], self.data.skeleton["hand"]["right"]) # Get the pixel's depth from the coordinates of the hands leftPixel = self.utils.getDepthFromMap( self.data.depth_map, self.data.skeleton["hand"]["left"]) rightPixel = self.utils.getDepthFromMap( self.data.depth_map, self.data.skeleton["hand"]["right"]) if self.data.hand == self.settings.LEFT_HAND: currentDepth = leftPixel elif self.data.hand == self.settings.RIGHT_HAND: currentDepth = rightPixel # Get the shift of the boundaries around both hands leftShift = self.utils.getHandBoundShift(leftPixel) rightShift = self.utils.getHandBoundShift(rightPixel) # Display a rectangle around both hands ui.drawHandBoundaries(frame, self.data.skeleton["hand"]["left"], leftShift, (50, 100, 255)) ui.drawHandBoundaries(frame, self.data.skeleton["hand"]["right"], rightShift, (200, 70, 30)) # Record the current data if the user is ready if self.recordIfReady: cv2.putText(frame, str(self.data.getWishedDistance()), (470, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (252, 63, 253), 5) if self.data.getWishedDistance( ) >= int(currentDepth) - 10 and self.data.getWishedDistance( ) <= int(currentDepth) + 10: self.record([]) self.recordIfReady = False else: if int(currentDepth) < self.data.getWishedDistance(): showCurrentDepth = str(currentDepth) + " +" else: showCurrentDepth = str(currentDepth) + " -" else: showCurrentDepth = str(currentDepth) cv2.putText(frame, showCurrentDepth, (5, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (50, 100, 255), 5) # Update the frame self.depthImage.setPixmap(ui.convertOpenCVFrameToQPixmap(frame)) self.timerScreen.start() # Update the label indicating the number of dataset elements saved so far for the current type # # @param None # @return None def updateDatasetNumberLabel(self): if self.data.type == Dataset.TYPE_POSITIVE: self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder( self.settings.getPositiveFolder()))) elif self.data.type == Dataset.TYPE_NEGATIVE: self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder( self.settings.getNegativeFolder()))) elif self.data.type == Dataset.TYPE_ACCURACY: self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder( self.settings.getAccuracyFolder()))) else: self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder( self.settings.getDatasetFolder()))) # Record the actual informations # # @param obj Initiator of the event # @return None def record(self, obj): # If the user collects data to check accuracy, prompts additional informations if self.data.type == Dataset.TYPE_ACCURACY: self.saveForTarget() # If the user collects data for a heat map, let's do it elif self.data.type == Dataset.TYPE_HEATMAP: # The same button will be used to stop recording if not self.heatmapRunning: self.startRecordHeatmap() else: self.stopRecordHeatmap() else: # Directly save the dataset and update the label number self.data.save() self.countdownEndedSound.play() self.updateDatasetNumberLabel() # Handle a countdown as a mean to record the informations with a delay # # @param None # @return None def recordCountdown(self): # Decrease the countdown and check if it needs to continue self.countdownRemaining -= 1 if self.countdownRemaining <= 0: # Re-initialise the timer and record the data self.countdownTimer.stop() self.countdownButton.setText("Saving..") self.countdownRemaining = 10 self.record([]) else: self.countdownTimer.start() self.countdownSound.play() # Display the actual reminaining self.countdownButton.setText("Save in %ds" % (self.countdownRemaining)) # Record a heatmap representation of the informations by successive captures # # @param None # @return None def recordHeatmap(self): if self.data.hand == self.settings.NO_HAND: print "Unable to record as no hand is selected" return False if len(self.user.users) > 0 and len(self.data.skeleton["head"]) > 0: # Input the data into the feature extractor result = self.bpn.check( self.featureExtractor.getFeatures(self.data)) # Add the depth of the finger tip point = self.featureExtractor.fingerTip[result[1]] point.append(self.utils.getDepthFromMap(self.data.depth_map, point)) # Verify that informations are correct if point[0] != 0 and point[1] != 0 and point[2] != 0: # Add the result of the neural network point.append(result[0]) self.heatmap.append(point) self.countdownSound.play() # Loop timer self.heatmapTimer.start() # Start the recording of the heatmap # # @param None # @return None def startRecordHeatmap(self): self.saveButton.setText("Stop recording") self.heatmapRunning = True self.heatmapTimer.start() # Stop the recording of the heatmap # # @param None # @return None def stopRecordHeatmap(self): self.heatmapTimer.stop() self.heatmapRunning = False self.countdownEndedSound.play() self.saveButton.setText("Record") self.accuracy.showHeatmap(self.heatmap, "front") self.heatmap = [] # Raise a flag to record the informations when the chosen distance will be met # # @param None # @return None def startRecordWhenReady(self): self.recordIfReady = True # Hold the current informations to indicate the position of the target thanks to the dialog window # # @param None # @return None def saveForTarget(self): # Freeze the data self.timerScreen.stop() self.countdownEndedSound.play() # Translate the depth values to a frame and set it in the dialog window frame = np.fromstring(self.depth.get_raw_depth_map_8(), np.uint8).reshape(480, 640) frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) self.dialogWindow.setFrame(frame) # Prompt the position of the target self.dialogWindow.exec_() # Toggle the type of dataset chosen # # @param value Identifier of the new type of dataset # @return None def toggleType(self, value): self.data.toggleType(value) if value == self.data.TYPE_HEATMAP: self.saveButton.setText("Record") self.countdownButton.setText("Record in %ds" % (self.countdownRemaining)) self.readyButton.setEnabled(False) # Create an array to hold all points self.heatmap = [] else: self.updateDatasetNumberLabel() if hasattr(self, 'saveButton'): self.saveButton.setText("Save") self.countdownButton.setText("Save in %ds" % (self.countdownRemaining)) self.readyButton.setEnabled(True) # Create the acquisition form of the main window # # @param None # @return None def createAcquisitionForm(self): globalLayout = QtWidgets.QHBoxLayout() vlayout = QtWidgets.QVBoxLayout() # Drop down menu of the distance to record the informations when the pointing hand meet the corresponding value hlayout = QtWidgets.QHBoxLayout() label = QtWidgets.QLabel("Distance") label.setFixedWidth(100) comboBox = QtWidgets.QComboBox() comboBox.currentIndexChanged.connect(self.data.toggleDistance) comboBox.setFixedWidth(200) comboBox.addItem("550") comboBox.addItem("750") comboBox.addItem("1000") comboBox.addItem("1250") comboBox.addItem("1500") comboBox.addItem("1750") comboBox.addItem("2000") comboBox.setCurrentIndex(0) hlayout.addWidget(label) hlayout.addWidget(comboBox) vlayout.addLayout(hlayout) # Drop down menu to select the type of hand of the dataset hlayout = QtWidgets.QHBoxLayout() label = QtWidgets.QLabel("Pointing hand") label.setFixedWidth(100) comboBox = QtWidgets.QComboBox() comboBox.currentIndexChanged.connect(self.data.toggleHand) comboBox.setFixedWidth(200) comboBox.addItem("Left") comboBox.addItem("Right") comboBox.addItem("None") comboBox.setCurrentIndex(0) hlayout.addWidget(label) hlayout.addWidget(comboBox) vlayout.addLayout(hlayout) # Drop down menu of the dataset type hlayout = QtWidgets.QHBoxLayout() label = QtWidgets.QLabel("Type") label.setFixedWidth(100) comboBox = QtWidgets.QComboBox() comboBox.currentIndexChanged.connect(self.toggleType) comboBox.setFixedWidth(200) comboBox.addItem("Positive") comboBox.addItem("Negative") comboBox.addItem("Accuracy") comboBox.addItem("Heat map") comboBox.setCurrentIndex(0) hlayout.addWidget(label) hlayout.addWidget(comboBox) vlayout.addLayout(hlayout) globalLayout.addLayout(vlayout) vlayout = QtWidgets.QVBoxLayout() self.numberLabel.setAlignment(QtCore.Qt.AlignCenter) vlayout.addWidget(self.numberLabel) # Action buttons to record the way that suits the most hLayout = QtWidgets.QHBoxLayout() self.readyButton = QtWidgets.QPushButton( 'Save when ready', clicked=self.startRecordWhenReady) self.saveButton = QtWidgets.QPushButton('Save', clicked=self.record) hLayout.addWidget(self.readyButton) vlayout.addLayout(hLayout) item_layout = QtWidgets.QHBoxLayout() self.countdownButton = QtWidgets.QPushButton( "Save in %ds" % (self.countdownRemaining), clicked=self.countdownTimer.start) self.saveButton = QtWidgets.QPushButton('Save', clicked=self.record) item_layout.addWidget(self.countdownButton) item_layout.addWidget(self.saveButton) vlayout.addLayout(item_layout) globalLayout.addLayout(vlayout) self.layout.addLayout(globalLayout)
from classes import Dataset from classes import Classifier from classes import Classifier_random from classes import Generation from classes import First_Generation import time import pickle t = time.time() data_1 = '\\flowers\\daisy' data_2 = '\\flowers\\tulip' data = Dataset(data_1, data_2) #with open('test_dataset.pickle', 'rb') as handle: # data = pickle.load(handle) print('---Data Loaded(' + str(round(time.time() - t, 2)) + 's)---\n') t = time.time() g = First_Generation( 500) #The number of individuals in all the generations is the same g.evaluate(data) print(f'Génération 1 ({round(time.time()-t,2)}s)') print(g) for i in range(2, 100): t = time.time() g = g.make_new_gen(150, mutation_rate=0.005) g.evaluate(data) print(f'\nGénération {i} ({round(time.time()-t,2)}s)') print(g)
def remove_duplicate_clauses(dataset): new_clauses = list(set(dataset.clauses)) new_dataset = Dataset(new_clauses) return new_dataset
def __init__(self): super(DatasetGui, self).__init__() self.setWindowTitle("Pointing Gesture Recognition - Dataset recording") # Retrieve all settings self.settings = Settings() # Load sounds self.countdownSound = QtMultimedia.QSound(self.settings.getResourceFolder()+"countdown.wav") self.countdownEndedSound = QtMultimedia.QSound(self.settings.getResourceFolder()+"countdown-ended.wav") # Get the context and initialise it self.context = Context() self.context.init() # Create the depth generator to get the depth map of the scene self.depth = DepthGenerator() self.depth.create(self.context) self.depth.set_resolution_preset(RES_VGA) self.depth.fps = 30 # Create the image generator to get an RGB image of the scene self.image = ImageGenerator() self.image.create(self.context) self.image.set_resolution_preset(RES_VGA) self.image.fps = 30 # Create the user generator to detect skeletons self.user = UserGenerator() self.user.create(self.context) # Initialise the skeleton tracking skeleton.init(self.user) # Start generating self.context.start_generating_all() print "Starting to detect users.." # Create a new dataset item self.data = Dataset() # Create a timer for an eventual countdown before recording the data self.countdownTimer = QtCore.QTimer() self.countdownRemaining = 10 self.countdownTimer.setInterval(1000) self.countdownTimer.setSingleShot(True) self.countdownTimer.timeout.connect(self.recordCountdown) # Create a timer to eventually record data for a heat map self.heatmapRunning = False self.heatmapTimer = QtCore.QTimer() self.heatmapTimer.setInterval(10) self.heatmapTimer.setSingleShot(True) self.heatmapTimer.timeout.connect(self.recordHeatmap) # Create the global layout self.layout = QtWidgets.QVBoxLayout(self) # Create custom widgets to hold sensor's images self.depthImage = SensorWidget() self.depthImage.setGeometry(10, 10, 640, 480) # Add these custom widgets to the global layout self.layout.addWidget(self.depthImage) # Hold the label indicating the number of dataset taken self.numberLabel = QtWidgets.QLabel() self.updateDatasetNumberLabel() # Create the acquisition form elements self.createAcquisitionForm() # Register a dialog window to prompt the target position self.dialogWindow = DatasetDialog(self) # Allow to save the data when the right distance is reached self.recordIfReady = False # Create and launch a timer to update the images self.timerScreen = QtCore.QTimer() self.timerScreen.setInterval(30) self.timerScreen.setSingleShot(True) self.timerScreen.timeout.connect(self.updateImage) self.timerScreen.start()
class DatasetGui(QtWidgets.QWidget): utils = Utils() featureExtractor = FeatureExtractor() bpn = BPNHandler(True) accuracy = accuracy.Accuracy() # Constructor of the DatasetGui class # # @param None # @return None def __init__(self): super(DatasetGui, self).__init__() self.setWindowTitle("Pointing Gesture Recognition - Dataset recording") # Retrieve all settings self.settings = Settings() # Load sounds self.countdownSound = QtMultimedia.QSound(self.settings.getResourceFolder()+"countdown.wav") self.countdownEndedSound = QtMultimedia.QSound(self.settings.getResourceFolder()+"countdown-ended.wav") # Get the context and initialise it self.context = Context() self.context.init() # Create the depth generator to get the depth map of the scene self.depth = DepthGenerator() self.depth.create(self.context) self.depth.set_resolution_preset(RES_VGA) self.depth.fps = 30 # Create the image generator to get an RGB image of the scene self.image = ImageGenerator() self.image.create(self.context) self.image.set_resolution_preset(RES_VGA) self.image.fps = 30 # Create the user generator to detect skeletons self.user = UserGenerator() self.user.create(self.context) # Initialise the skeleton tracking skeleton.init(self.user) # Start generating self.context.start_generating_all() print "Starting to detect users.." # Create a new dataset item self.data = Dataset() # Create a timer for an eventual countdown before recording the data self.countdownTimer = QtCore.QTimer() self.countdownRemaining = 10 self.countdownTimer.setInterval(1000) self.countdownTimer.setSingleShot(True) self.countdownTimer.timeout.connect(self.recordCountdown) # Create a timer to eventually record data for a heat map self.heatmapRunning = False self.heatmapTimer = QtCore.QTimer() self.heatmapTimer.setInterval(10) self.heatmapTimer.setSingleShot(True) self.heatmapTimer.timeout.connect(self.recordHeatmap) # Create the global layout self.layout = QtWidgets.QVBoxLayout(self) # Create custom widgets to hold sensor's images self.depthImage = SensorWidget() self.depthImage.setGeometry(10, 10, 640, 480) # Add these custom widgets to the global layout self.layout.addWidget(self.depthImage) # Hold the label indicating the number of dataset taken self.numberLabel = QtWidgets.QLabel() self.updateDatasetNumberLabel() # Create the acquisition form elements self.createAcquisitionForm() # Register a dialog window to prompt the target position self.dialogWindow = DatasetDialog(self) # Allow to save the data when the right distance is reached self.recordIfReady = False # Create and launch a timer to update the images self.timerScreen = QtCore.QTimer() self.timerScreen.setInterval(30) self.timerScreen.setSingleShot(True) self.timerScreen.timeout.connect(self.updateImage) self.timerScreen.start() # Update the depth image displayed within the main window # # @param None # @return None def updateImage(self): # Update to next frame self.context.wait_and_update_all() # Extract informations of each tracked user self.data = skeleton.track(self.user, self.depth, self.data) # Get the whole depth map self.data.depth_map = np.asarray(self.depth.get_tuple_depth_map()).reshape(480, 640) # Create the frame from the raw depth map string and convert it to RGB frame = np.fromstring(self.depth.get_raw_depth_map_8(), np.uint8).reshape(480, 640) frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) # Get the RGB image of the scene self.data.image = np.fromstring(self.image.get_raw_image_map_bgr(), dtype=np.uint8).reshape(480, 640, 3) # Will be used to specify the depth of the current hand wished currentDepth, showCurrentDepth = 0, "" if len(self.user.users) > 0 and len(self.data.skeleton["head"]) > 0: # Highlight the head ui.drawPoint(frame, self.data.skeleton["head"][0], self.data.skeleton["head"][1], 5) # Display lines from elbows to the respective hands ui.drawElbowLine(frame, self.data.skeleton["elbow"]["left"], self.data.skeleton["hand"]["left"]) ui.drawElbowLine(frame, self.data.skeleton["elbow"]["right"], self.data.skeleton["hand"]["right"]) # Get the pixel's depth from the coordinates of the hands leftPixel = self.utils.getDepthFromMap(self.data.depth_map, self.data.skeleton["hand"]["left"]) rightPixel = self.utils.getDepthFromMap(self.data.depth_map, self.data.skeleton["hand"]["right"]) if self.data.hand == self.settings.LEFT_HAND: currentDepth = leftPixel elif self.data.hand == self.settings.RIGHT_HAND: currentDepth = rightPixel # Get the shift of the boundaries around both hands leftShift = self.utils.getHandBoundShift(leftPixel) rightShift = self.utils.getHandBoundShift(rightPixel) # Display a rectangle around both hands ui.drawHandBoundaries(frame, self.data.skeleton["hand"]["left"], leftShift, (50, 100, 255)) ui.drawHandBoundaries(frame, self.data.skeleton["hand"]["right"], rightShift, (200, 70, 30)) # Record the current data if the user is ready if self.recordIfReady: cv2.putText(frame, str(self.data.getWishedDistance()), (470, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (252, 63, 253), 5) if self.data.getWishedDistance()>=int(currentDepth)-10 and self.data.getWishedDistance()<=int(currentDepth)+10: self.record([]) self.recordIfReady = False else: if int(currentDepth)<self.data.getWishedDistance(): showCurrentDepth = str(currentDepth)+" +" else: showCurrentDepth = str(currentDepth)+" -" else: showCurrentDepth = str(currentDepth) cv2.putText(frame, showCurrentDepth, (5, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (50, 100, 255), 5) # Update the frame self.depthImage.setPixmap(ui.convertOpenCVFrameToQPixmap(frame)) self.timerScreen.start() # Update the label indicating the number of dataset elements saved so far for the current type # # @param None # @return None def updateDatasetNumberLabel(self): if self.data.type == Dataset.TYPE_POSITIVE: self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder(self.settings.getPositiveFolder()))) elif self.data.type == Dataset.TYPE_NEGATIVE: self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder(self.settings.getNegativeFolder()))) elif self.data.type == Dataset.TYPE_ACCURACY: self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder(self.settings.getAccuracyFolder()))) else: self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder(self.settings.getDatasetFolder()))) # Record the actual informations # # @param obj Initiator of the event # @return None def record(self, obj): # If the user collects data to check accuracy, prompts additional informations if self.data.type == Dataset.TYPE_ACCURACY: self.saveForTarget() # If the user collects data for a heat map, let's do it elif self.data.type == Dataset.TYPE_HEATMAP: # The same button will be used to stop recording if not self.heatmapRunning: self.startRecordHeatmap() else: self.stopRecordHeatmap() else: # Directly save the dataset and update the label number self.data.save() self.countdownEndedSound.play() self.updateDatasetNumberLabel() # Handle a countdown as a mean to record the informations with a delay # # @param None # @return None def recordCountdown(self): # Decrease the countdown and check if it needs to continue self.countdownRemaining -= 1 if self.countdownRemaining <= 0: # Re-initialise the timer and record the data self.countdownTimer.stop() self.countdownButton.setText("Saving..") self.countdownRemaining = 10 self.record([]) else: self.countdownTimer.start() self.countdownSound.play() # Display the actual reminaining self.countdownButton.setText("Save in %ds"%(self.countdownRemaining)) # Record a heatmap representation of the informations by successive captures # # @param None # @return None def recordHeatmap(self): if self.data.hand == self.settings.NO_HAND: print "Unable to record as no hand is selected" return False if len(self.user.users) > 0 and len(self.data.skeleton["head"]) > 0: # Input the data into the feature extractor result = self.bpn.check(self.featureExtractor.getFeatures(self.data)) # Add the depth of the finger tip point = self.featureExtractor.fingerTip[result[1]] point.append(self.utils.getDepthFromMap(self.data.depth_map, point)) # Verify that informations are correct if point[0]!=0 and point[1]!=0 and point[2]!=0: # Add the result of the neural network point.append(result[0]) self.heatmap.append(point) self.countdownSound.play() # Loop timer self.heatmapTimer.start() # Start the recording of the heatmap # # @param None # @return None def startRecordHeatmap(self): self.saveButton.setText("Stop recording") self.heatmapRunning = True self.heatmapTimer.start() # Stop the recording of the heatmap # # @param None # @return None def stopRecordHeatmap(self): self.heatmapTimer.stop() self.heatmapRunning = False self.countdownEndedSound.play() self.saveButton.setText("Record") self.accuracy.showHeatmap(self.heatmap, "front") self.heatmap = [] # Raise a flag to record the informations when the chosen distance will be met # # @param None # @return None def startRecordWhenReady(self): self.recordIfReady = True # Hold the current informations to indicate the position of the target thanks to the dialog window # # @param None # @return None def saveForTarget(self): # Freeze the data self.timerScreen.stop() self.countdownEndedSound.play() # Translate the depth values to a frame and set it in the dialog window frame = np.fromstring(self.depth.get_raw_depth_map_8(), np.uint8).reshape(480, 640) frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) self.dialogWindow.setFrame(frame) # Prompt the position of the target self.dialogWindow.exec_() # Toggle the type of dataset chosen # # @param value Identifier of the new type of dataset # @return None def toggleType(self, value): self.data.toggleType(value) if value == self.data.TYPE_HEATMAP: self.saveButton.setText("Record") self.countdownButton.setText("Record in %ds"%(self.countdownRemaining)) self.readyButton.setEnabled(False) # Create an array to hold all points self.heatmap = [] else: self.updateDatasetNumberLabel() if hasattr(self, 'saveButton'): self.saveButton.setText("Save") self.countdownButton.setText("Save in %ds"%(self.countdownRemaining)) self.readyButton.setEnabled(True) # Create the acquisition form of the main window # # @param None # @return None def createAcquisitionForm(self): globalLayout = QtWidgets.QHBoxLayout() vlayout = QtWidgets.QVBoxLayout() # Drop down menu of the distance to record the informations when the pointing hand meet the corresponding value hlayout = QtWidgets.QHBoxLayout() label = QtWidgets.QLabel("Distance") label.setFixedWidth(100) comboBox = QtWidgets.QComboBox() comboBox.currentIndexChanged.connect(self.data.toggleDistance) comboBox.setFixedWidth(200) comboBox.addItem("550") comboBox.addItem("750") comboBox.addItem("1000") comboBox.addItem("1250") comboBox.addItem("1500") comboBox.addItem("1750") comboBox.addItem("2000") comboBox.setCurrentIndex(0) hlayout.addWidget(label) hlayout.addWidget(comboBox) vlayout.addLayout(hlayout) # Drop down menu to select the type of hand of the dataset hlayout = QtWidgets.QHBoxLayout() label = QtWidgets.QLabel("Pointing hand") label.setFixedWidth(100) comboBox = QtWidgets.QComboBox() comboBox.currentIndexChanged.connect(self.data.toggleHand) comboBox.setFixedWidth(200) comboBox.addItem("Left") comboBox.addItem("Right") comboBox.addItem("None") comboBox.setCurrentIndex(0) hlayout.addWidget(label) hlayout.addWidget(comboBox) vlayout.addLayout(hlayout) # Drop down menu of the dataset type hlayout = QtWidgets.QHBoxLayout() label = QtWidgets.QLabel("Type") label.setFixedWidth(100) comboBox = QtWidgets.QComboBox() comboBox.currentIndexChanged.connect(self.toggleType) comboBox.setFixedWidth(200) comboBox.addItem("Positive") comboBox.addItem("Negative") comboBox.addItem("Accuracy") comboBox.addItem("Heat map") comboBox.setCurrentIndex(0) hlayout.addWidget(label) hlayout.addWidget(comboBox) vlayout.addLayout(hlayout) globalLayout.addLayout(vlayout) vlayout = QtWidgets.QVBoxLayout() self.numberLabel.setAlignment(QtCore.Qt.AlignCenter) vlayout.addWidget(self.numberLabel) # Action buttons to record the way that suits the most hLayout = QtWidgets.QHBoxLayout() self.readyButton = QtWidgets.QPushButton('Save when ready', clicked=self.startRecordWhenReady) self.saveButton = QtWidgets.QPushButton('Save', clicked=self.record) hLayout.addWidget(self.readyButton) vlayout.addLayout(hLayout) item_layout = QtWidgets.QHBoxLayout() self.countdownButton = QtWidgets.QPushButton("Save in %ds"%(self.countdownRemaining), clicked=self.countdownTimer.start) self.saveButton = QtWidgets.QPushButton('Save', clicked=self.record) item_layout.addWidget(self.countdownButton) item_layout.addWidget(self.saveButton) vlayout.addLayout(item_layout) globalLayout.addLayout(vlayout) self.layout.addLayout(globalLayout)
if not os.path.isdir(name_exp + "/models"): os.mkdir(name_exp + "/models") #CUDA use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if use_cuda else "cpu") torch.backends.cudnn.benchmark = True params = {'batch_size': 64, 'shuffle': True, 'num_workers': 6} #Dataset partition = create_partition_dict(list_utt_id, []) spk_id_att_labels = txt_2_dict(att_labels_txt) labels = create_labels_dict(list_utt_id, [], spk_id_att_labels) #Generators training_set = Dataset(partition['train'], labels, data_file, prob_file) generator = data.DataLoader(training_set, **params) # Layer dimension input_dim = 512 latent_dim = 128 input_dim_discrim = latent_dim hidden_dim_discrim = 128 model_ae = Autoencoder(input_dim, latent_dim) optimizer_ae = torch.optim.SGD(model_ae.parameters(), lr=0.0001, momentum=0.9) model_ae.to(device)