def createInitialDatasets():
    print "Creating data sets"
    t0 = time.time()

    datasetDict = {}

    dataFile = h5py.File(dataFileName, 'r')
    mapCoord['x1'] = len(dataFile['bed'][:][0])
    mapCoord['y1'] = len(dataFile['bed'][:])
    mapCoord['proj_x1'] = dataFile['x'][:][-1]
    mapCoord['proj_y1'] = dataFile['y'][:][-1]

    surfaceX = Dataset('surfaceGradX')
    surfaceY = Dataset('surfaceGradY')
    datasetDict['surfaceGradX'] = surfaceX
    datasetDict['surfaceGradY'] = surfaceY

    velocity = Dataset('velocity')
    datasetDict['velocity'] = velocity

    smb = Dataset('smb')
    datasetDict['smb'] = smb

    bed = Dataset('bed')
    datasetDict['bed'] = bed

    surface = Dataset('surface')
    datasetDict['surface'] = surface

    thickness = Dataset('thickness')
    datasetDict['thickness'] = thickness

    t2m = Dataset('t2m')
    datasetDict['t2m'] = t2m

    datasetDict['x'] = Dataset('x')
    datasetDict['y'] = Dataset('y')

    dataFile.close()

    print "Loaded all data sets in ", time.time() - t0, " seconds"
    return datasetDict
def test3():
    d = sentences()
    literals = []
    literals.append([d['not_a'], d['c']])
    literals.append([d['not_b'], d['c']])
    literals.append([d['a'], d['b']])
    clauses = create_clauses(literals)

    not_observable_fact = [d['not_c']]

    not_observable_clause = Clause(not_observable_fact)

    clauses.append(not_observable_clause)
    dataset = Dataset(clauses)
    return dataset
Exemple #3
0
def createInitialDataSets():
    print "Creating data sets"
    t0 = time.time()

    datasetDict = {}
    """
    Read in dimensions of bed
    at point of comment x = 1670, y = 2991
    read in last values of x and y and map to the object map
    """
    dataFile = h5py.File(dataFileName, 'r')
    map['x1'] = len(dataFile['bed'][:][0])
    map['y1'] = len(dataFile['bed'][:])
    map['proj_x1'] = dataFile['x'][:][-1]
    map['proj_y1'] = dataFile['y'][:][-1]

    velocity = Dataset('velocity', greenPlotPen)
    datasetDict['velocity'] = velocity

    smb = Dataset('smb', redPlotPen)
    datasetDict['smb'] = smb

    bed = Dataset('bed', bluePlotPen)
    datasetDict['bed'] = bed

    surface = Dataset('surface', greyPlotPen)
    datasetDict['surface'] = surface

    thickness = Dataset('thickness', orangePlotPen)
    datasetDict['thickness'] = thickness

    t2m = Dataset('t2m', tealPlotPen)
    datasetDict['t2m'] = t2m

    dataFile.close()

    print "Loaded all data sets in ", time.time() - t0, " seconds"
    return datasetDict
Exemple #4
0
    def __init__(self):
        super(DatasetGui, self).__init__()
        self.setWindowTitle("Pointing Gesture Recognition - Dataset recording")

        # Retrieve all settings
        self.settings = Settings()

        # Load sounds
        self.countdownSound = QtMultimedia.QSound(
            self.settings.getResourceFolder() + "countdown.wav")
        self.countdownEndedSound = QtMultimedia.QSound(
            self.settings.getResourceFolder() + "countdown-ended.wav")

        # Get the context and initialise it
        self.context = Context()
        self.context.init()

        # Create the depth generator to get the depth map of the scene
        self.depth = DepthGenerator()
        self.depth.create(self.context)
        self.depth.set_resolution_preset(RES_VGA)
        self.depth.fps = 30

        # Create the image generator to get an RGB image of the scene
        self.image = ImageGenerator()
        self.image.create(self.context)
        self.image.set_resolution_preset(RES_VGA)
        self.image.fps = 30

        # Create the user generator to detect skeletons
        self.user = UserGenerator()
        self.user.create(self.context)

        # Initialise the skeleton tracking
        skeleton.init(self.user)

        # Start generating
        self.context.start_generating_all()
        print "Starting to detect users.."

        # Create a new dataset item
        self.data = Dataset()

        # Create a timer for an eventual countdown before recording the data
        self.countdownTimer = QtCore.QTimer()
        self.countdownRemaining = 10
        self.countdownTimer.setInterval(1000)
        self.countdownTimer.setSingleShot(True)
        self.countdownTimer.timeout.connect(self.recordCountdown)

        # Create a timer to eventually record data for a heat map
        self.heatmapRunning = False
        self.heatmapTimer = QtCore.QTimer()
        self.heatmapTimer.setInterval(10)
        self.heatmapTimer.setSingleShot(True)
        self.heatmapTimer.timeout.connect(self.recordHeatmap)

        # Create the global layout
        self.layout = QtWidgets.QVBoxLayout(self)

        # Create custom widgets to hold sensor's images
        self.depthImage = SensorWidget()
        self.depthImage.setGeometry(10, 10, 640, 480)

        # Add these custom widgets to the global layout
        self.layout.addWidget(self.depthImage)

        # Hold the label indicating the number of dataset taken
        self.numberLabel = QtWidgets.QLabel()
        self.updateDatasetNumberLabel()

        # Create the acquisition form elements
        self.createAcquisitionForm()

        # Register a dialog window to prompt the target position
        self.dialogWindow = DatasetDialog(self)

        # Allow to save the data when the right distance is reached
        self.recordIfReady = False

        # Create and launch a timer to update the images
        self.timerScreen = QtCore.QTimer()
        self.timerScreen.setInterval(30)
        self.timerScreen.setSingleShot(True)
        self.timerScreen.timeout.connect(self.updateImage)
        self.timerScreen.start()
Exemple #5
0
class DatasetGui(QtWidgets.QWidget):

    utils = Utils()
    featureExtractor = FeatureExtractor()
    bpn = BPNHandler(True)
    accuracy = accuracy.Accuracy()

    # Constructor of the DatasetGui class
    #
    # @param	None
    # @return	None
    def __init__(self):
        super(DatasetGui, self).__init__()
        self.setWindowTitle("Pointing Gesture Recognition - Dataset recording")

        # Retrieve all settings
        self.settings = Settings()

        # Load sounds
        self.countdownSound = QtMultimedia.QSound(
            self.settings.getResourceFolder() + "countdown.wav")
        self.countdownEndedSound = QtMultimedia.QSound(
            self.settings.getResourceFolder() + "countdown-ended.wav")

        # Get the context and initialise it
        self.context = Context()
        self.context.init()

        # Create the depth generator to get the depth map of the scene
        self.depth = DepthGenerator()
        self.depth.create(self.context)
        self.depth.set_resolution_preset(RES_VGA)
        self.depth.fps = 30

        # Create the image generator to get an RGB image of the scene
        self.image = ImageGenerator()
        self.image.create(self.context)
        self.image.set_resolution_preset(RES_VGA)
        self.image.fps = 30

        # Create the user generator to detect skeletons
        self.user = UserGenerator()
        self.user.create(self.context)

        # Initialise the skeleton tracking
        skeleton.init(self.user)

        # Start generating
        self.context.start_generating_all()
        print "Starting to detect users.."

        # Create a new dataset item
        self.data = Dataset()

        # Create a timer for an eventual countdown before recording the data
        self.countdownTimer = QtCore.QTimer()
        self.countdownRemaining = 10
        self.countdownTimer.setInterval(1000)
        self.countdownTimer.setSingleShot(True)
        self.countdownTimer.timeout.connect(self.recordCountdown)

        # Create a timer to eventually record data for a heat map
        self.heatmapRunning = False
        self.heatmapTimer = QtCore.QTimer()
        self.heatmapTimer.setInterval(10)
        self.heatmapTimer.setSingleShot(True)
        self.heatmapTimer.timeout.connect(self.recordHeatmap)

        # Create the global layout
        self.layout = QtWidgets.QVBoxLayout(self)

        # Create custom widgets to hold sensor's images
        self.depthImage = SensorWidget()
        self.depthImage.setGeometry(10, 10, 640, 480)

        # Add these custom widgets to the global layout
        self.layout.addWidget(self.depthImage)

        # Hold the label indicating the number of dataset taken
        self.numberLabel = QtWidgets.QLabel()
        self.updateDatasetNumberLabel()

        # Create the acquisition form elements
        self.createAcquisitionForm()

        # Register a dialog window to prompt the target position
        self.dialogWindow = DatasetDialog(self)

        # Allow to save the data when the right distance is reached
        self.recordIfReady = False

        # Create and launch a timer to update the images
        self.timerScreen = QtCore.QTimer()
        self.timerScreen.setInterval(30)
        self.timerScreen.setSingleShot(True)
        self.timerScreen.timeout.connect(self.updateImage)
        self.timerScreen.start()

    # Update the depth image displayed within the main window
    #
    # @param	None
    # @return	None
    def updateImage(self):
        # Update to next frame
        self.context.wait_and_update_all()

        # Extract informations of each tracked user
        self.data = skeleton.track(self.user, self.depth, self.data)

        # Get the whole depth map
        self.data.depth_map = np.asarray(
            self.depth.get_tuple_depth_map()).reshape(480, 640)

        # Create the frame from the raw depth map string and convert it to RGB
        frame = np.fromstring(self.depth.get_raw_depth_map_8(),
                              np.uint8).reshape(480, 640)
        frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)

        # Get the RGB image of the scene
        self.data.image = np.fromstring(self.image.get_raw_image_map_bgr(),
                                        dtype=np.uint8).reshape(480, 640, 3)

        # Will be used to specify the depth of the current hand wished
        currentDepth, showCurrentDepth = 0, ""

        if len(self.user.users) > 0 and len(self.data.skeleton["head"]) > 0:
            # Highlight the head
            ui.drawPoint(frame, self.data.skeleton["head"][0],
                         self.data.skeleton["head"][1], 5)

            # Display lines from elbows to the respective hands
            ui.drawElbowLine(frame, self.data.skeleton["elbow"]["left"],
                             self.data.skeleton["hand"]["left"])
            ui.drawElbowLine(frame, self.data.skeleton["elbow"]["right"],
                             self.data.skeleton["hand"]["right"])

            # Get the pixel's depth from the coordinates of the hands
            leftPixel = self.utils.getDepthFromMap(
                self.data.depth_map, self.data.skeleton["hand"]["left"])
            rightPixel = self.utils.getDepthFromMap(
                self.data.depth_map, self.data.skeleton["hand"]["right"])

            if self.data.hand == self.settings.LEFT_HAND:
                currentDepth = leftPixel
            elif self.data.hand == self.settings.RIGHT_HAND:
                currentDepth = rightPixel

            # Get the shift of the boundaries around both hands
            leftShift = self.utils.getHandBoundShift(leftPixel)
            rightShift = self.utils.getHandBoundShift(rightPixel)

            # Display a rectangle around both hands
            ui.drawHandBoundaries(frame, self.data.skeleton["hand"]["left"],
                                  leftShift, (50, 100, 255))
            ui.drawHandBoundaries(frame, self.data.skeleton["hand"]["right"],
                                  rightShift, (200, 70, 30))

        # Record the current data if the user is ready
        if self.recordIfReady:
            cv2.putText(frame, str(self.data.getWishedDistance()), (470, 60),
                        cv2.FONT_HERSHEY_SIMPLEX, 2, (252, 63, 253), 5)

            if self.data.getWishedDistance(
            ) >= int(currentDepth) - 10 and self.data.getWishedDistance(
            ) <= int(currentDepth) + 10:
                self.record([])
                self.recordIfReady = False
            else:
                if int(currentDepth) < self.data.getWishedDistance():
                    showCurrentDepth = str(currentDepth) + " +"
                else:
                    showCurrentDepth = str(currentDepth) + " -"
        else:
            showCurrentDepth = str(currentDepth)

        cv2.putText(frame, showCurrentDepth, (5, 60), cv2.FONT_HERSHEY_SIMPLEX,
                    2, (50, 100, 255), 5)

        # Update the frame
        self.depthImage.setPixmap(ui.convertOpenCVFrameToQPixmap(frame))

        self.timerScreen.start()

    # Update the label indicating the number of dataset elements saved so far for the current type
    #
    # @param	None
    # @return	None
    def updateDatasetNumberLabel(self):
        if self.data.type == Dataset.TYPE_POSITIVE:
            self.numberLabel.setText("Dataset #%d" %
                                     (self.utils.getFileNumberInFolder(
                                         self.settings.getPositiveFolder())))
        elif self.data.type == Dataset.TYPE_NEGATIVE:
            self.numberLabel.setText("Dataset #%d" %
                                     (self.utils.getFileNumberInFolder(
                                         self.settings.getNegativeFolder())))
        elif self.data.type == Dataset.TYPE_ACCURACY:
            self.numberLabel.setText("Dataset #%d" %
                                     (self.utils.getFileNumberInFolder(
                                         self.settings.getAccuracyFolder())))
        else:
            self.numberLabel.setText("Dataset #%d" %
                                     (self.utils.getFileNumberInFolder(
                                         self.settings.getDatasetFolder())))

    # Record the actual informations
    #
    # @param	obj					Initiator of the event
    # @return	None
    def record(self, obj):
        # If the user collects data to check accuracy, prompts additional informations
        if self.data.type == Dataset.TYPE_ACCURACY:
            self.saveForTarget()
        # If the user collects data for a heat map, let's do it
        elif self.data.type == Dataset.TYPE_HEATMAP:
            # The same button will be used to stop recording
            if not self.heatmapRunning:
                self.startRecordHeatmap()
            else:
                self.stopRecordHeatmap()
        else:
            # Directly save the dataset and update the label number
            self.data.save()
            self.countdownEndedSound.play()
            self.updateDatasetNumberLabel()

    # Handle a countdown as a mean to record the informations with a delay
    #
    # @param	None
    # @return	None
    def recordCountdown(self):
        # Decrease the countdown and check if it needs to continue
        self.countdownRemaining -= 1

        if self.countdownRemaining <= 0:
            # Re-initialise the timer and record the data
            self.countdownTimer.stop()
            self.countdownButton.setText("Saving..")
            self.countdownRemaining = 10
            self.record([])
        else:
            self.countdownTimer.start()
            self.countdownSound.play()

        # Display the actual reminaining
        self.countdownButton.setText("Save in %ds" % (self.countdownRemaining))

    # Record a heatmap representation of the informations by successive captures
    #
    # @param	None
    # @return	None
    def recordHeatmap(self):
        if self.data.hand == self.settings.NO_HAND:
            print "Unable to record as no hand is selected"
            return False

        if len(self.user.users) > 0 and len(self.data.skeleton["head"]) > 0:
            # Input the data into the feature extractor
            result = self.bpn.check(
                self.featureExtractor.getFeatures(self.data))

            # Add the depth of the finger tip
            point = self.featureExtractor.fingerTip[result[1]]
            point.append(self.utils.getDepthFromMap(self.data.depth_map,
                                                    point))

            # Verify that informations are correct
            if point[0] != 0 and point[1] != 0 and point[2] != 0:
                # Add the result of the neural network
                point.append(result[0])

                self.heatmap.append(point)
                self.countdownSound.play()

        # Loop timer
        self.heatmapTimer.start()

    # Start the recording of the heatmap
    #
    # @param	None
    # @return	None
    def startRecordHeatmap(self):
        self.saveButton.setText("Stop recording")
        self.heatmapRunning = True
        self.heatmapTimer.start()

    # Stop the recording of the heatmap
    #
    # @param	None
    # @return	None
    def stopRecordHeatmap(self):
        self.heatmapTimer.stop()
        self.heatmapRunning = False
        self.countdownEndedSound.play()

        self.saveButton.setText("Record")

        self.accuracy.showHeatmap(self.heatmap, "front")
        self.heatmap = []

    # Raise a flag to record the informations when the chosen distance will be met
    #
    # @param	None
    # @return	None
    def startRecordWhenReady(self):
        self.recordIfReady = True

    # Hold the current informations to indicate the position of the target thanks to the dialog window
    #
    # @param	None
    # @return	None
    def saveForTarget(self):
        # Freeze the data
        self.timerScreen.stop()
        self.countdownEndedSound.play()

        # Translate the depth values to a frame and set it in the dialog window
        frame = np.fromstring(self.depth.get_raw_depth_map_8(),
                              np.uint8).reshape(480, 640)
        frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
        self.dialogWindow.setFrame(frame)

        # Prompt the position of the target
        self.dialogWindow.exec_()

    # Toggle the type of dataset chosen
    #
    # @param	value				Identifier of the new type of dataset
    # @return	None
    def toggleType(self, value):
        self.data.toggleType(value)

        if value == self.data.TYPE_HEATMAP:
            self.saveButton.setText("Record")
            self.countdownButton.setText("Record in %ds" %
                                         (self.countdownRemaining))
            self.readyButton.setEnabled(False)

            # Create an array to hold all points
            self.heatmap = []
        else:
            self.updateDatasetNumberLabel()
            if hasattr(self, 'saveButton'):
                self.saveButton.setText("Save")
                self.countdownButton.setText("Save in %ds" %
                                             (self.countdownRemaining))
                self.readyButton.setEnabled(True)

    # Create the acquisition form of the main window
    #
    # @param	None
    # @return	None
    def createAcquisitionForm(self):
        globalLayout = QtWidgets.QHBoxLayout()
        vlayout = QtWidgets.QVBoxLayout()

        # Drop down menu of the distance to record the informations when the pointing hand meet the corresponding value
        hlayout = QtWidgets.QHBoxLayout()
        label = QtWidgets.QLabel("Distance")
        label.setFixedWidth(100)
        comboBox = QtWidgets.QComboBox()
        comboBox.currentIndexChanged.connect(self.data.toggleDistance)
        comboBox.setFixedWidth(200)
        comboBox.addItem("550")
        comboBox.addItem("750")
        comboBox.addItem("1000")
        comboBox.addItem("1250")
        comboBox.addItem("1500")
        comboBox.addItem("1750")
        comboBox.addItem("2000")
        comboBox.setCurrentIndex(0)
        hlayout.addWidget(label)
        hlayout.addWidget(comboBox)
        vlayout.addLayout(hlayout)

        # Drop down menu to select the type of hand of the dataset
        hlayout = QtWidgets.QHBoxLayout()
        label = QtWidgets.QLabel("Pointing hand")
        label.setFixedWidth(100)
        comboBox = QtWidgets.QComboBox()
        comboBox.currentIndexChanged.connect(self.data.toggleHand)
        comboBox.setFixedWidth(200)
        comboBox.addItem("Left")
        comboBox.addItem("Right")
        comboBox.addItem("None")
        comboBox.setCurrentIndex(0)
        hlayout.addWidget(label)
        hlayout.addWidget(comboBox)
        vlayout.addLayout(hlayout)

        # Drop down menu of the dataset type
        hlayout = QtWidgets.QHBoxLayout()
        label = QtWidgets.QLabel("Type")
        label.setFixedWidth(100)
        comboBox = QtWidgets.QComboBox()
        comboBox.currentIndexChanged.connect(self.toggleType)
        comboBox.setFixedWidth(200)
        comboBox.addItem("Positive")
        comboBox.addItem("Negative")
        comboBox.addItem("Accuracy")
        comboBox.addItem("Heat map")
        comboBox.setCurrentIndex(0)
        hlayout.addWidget(label)
        hlayout.addWidget(comboBox)
        vlayout.addLayout(hlayout)

        globalLayout.addLayout(vlayout)
        vlayout = QtWidgets.QVBoxLayout()

        self.numberLabel.setAlignment(QtCore.Qt.AlignCenter)
        vlayout.addWidget(self.numberLabel)

        # Action buttons to record the way that suits the most
        hLayout = QtWidgets.QHBoxLayout()
        self.readyButton = QtWidgets.QPushButton(
            'Save when ready', clicked=self.startRecordWhenReady)
        self.saveButton = QtWidgets.QPushButton('Save', clicked=self.record)
        hLayout.addWidget(self.readyButton)
        vlayout.addLayout(hLayout)

        item_layout = QtWidgets.QHBoxLayout()
        self.countdownButton = QtWidgets.QPushButton(
            "Save in %ds" % (self.countdownRemaining),
            clicked=self.countdownTimer.start)
        self.saveButton = QtWidgets.QPushButton('Save', clicked=self.record)
        item_layout.addWidget(self.countdownButton)
        item_layout.addWidget(self.saveButton)
        vlayout.addLayout(item_layout)

        globalLayout.addLayout(vlayout)
        self.layout.addLayout(globalLayout)
Exemple #6
0
from classes import Dataset
from classes import Classifier
from classes import Classifier_random
from classes import Generation
from classes import First_Generation
import time
import pickle

t = time.time()
data_1 = '\\flowers\\daisy'
data_2 = '\\flowers\\tulip'
data = Dataset(data_1, data_2)
#with open('test_dataset.pickle', 'rb') as handle:
#    data = pickle.load(handle)

print('---Data Loaded(' + str(round(time.time() - t, 2)) + 's)---\n')

t = time.time()
g = First_Generation(
    500)  #The number of individuals in all the generations is the same
g.evaluate(data)
print(f'Génération 1  ({round(time.time()-t,2)}s)')
print(g)

for i in range(2, 100):
    t = time.time()
    g = g.make_new_gen(150, mutation_rate=0.005)
    g.evaluate(data)
    print(f'\nGénération {i}  ({round(time.time()-t,2)}s)')
    print(g)
Exemple #7
0
def remove_duplicate_clauses(dataset):
    new_clauses = list(set(dataset.clauses))
    new_dataset = Dataset(new_clauses)
    return new_dataset
	def __init__(self):
		super(DatasetGui, self).__init__()
		self.setWindowTitle("Pointing Gesture Recognition - Dataset recording")
		
		# Retrieve all settings
		self.settings = Settings()
		
		# Load sounds
		self.countdownSound = QtMultimedia.QSound(self.settings.getResourceFolder()+"countdown.wav")
		self.countdownEndedSound = QtMultimedia.QSound(self.settings.getResourceFolder()+"countdown-ended.wav")
		

		# Get the context and initialise it
		self.context = Context()
		self.context.init()

		# Create the depth generator to get the depth map of the scene
		self.depth = DepthGenerator()
		self.depth.create(self.context)
		self.depth.set_resolution_preset(RES_VGA)
		self.depth.fps = 30

		# Create the image generator to get an RGB image of the scene
		self.image = ImageGenerator()
		self.image.create(self.context)
		self.image.set_resolution_preset(RES_VGA)
		self.image.fps = 30

		# Create the user generator to detect skeletons
		self.user = UserGenerator()
		self.user.create(self.context)

		# Initialise the skeleton tracking
		skeleton.init(self.user)

		# Start generating
		self.context.start_generating_all()
		print "Starting to detect users.."
		
		
		# Create a new dataset item
		self.data = Dataset()
		
		
		# Create a timer for an eventual countdown before recording the data
		self.countdownTimer = QtCore.QTimer()
		self.countdownRemaining = 10
		self.countdownTimer.setInterval(1000)
		self.countdownTimer.setSingleShot(True)
		self.countdownTimer.timeout.connect(self.recordCountdown)
		
		# Create a timer to eventually record data for a heat map
		self.heatmapRunning = False
		self.heatmapTimer = QtCore.QTimer()
		self.heatmapTimer.setInterval(10)
		self.heatmapTimer.setSingleShot(True)
		self.heatmapTimer.timeout.connect(self.recordHeatmap)
		
		
		# Create the global layout
		self.layout = QtWidgets.QVBoxLayout(self)
		
		# Create custom widgets to hold sensor's images
		self.depthImage = SensorWidget()
		self.depthImage.setGeometry(10, 10, 640, 480)
		
		# Add these custom widgets to the global layout
		self.layout.addWidget(self.depthImage)
		
		# Hold the label indicating the number of dataset taken
		self.numberLabel = QtWidgets.QLabel()
		self.updateDatasetNumberLabel()
		
		# Create the acquisition form elements
		self.createAcquisitionForm()
		
		
		# Register a dialog window to prompt the target position
		self.dialogWindow = DatasetDialog(self)
		
		
		# Allow to save the data when the right distance is reached
		self.recordIfReady = False
		
		
		# Create and launch a timer to update the images
		self.timerScreen = QtCore.QTimer()
		self.timerScreen.setInterval(30)
		self.timerScreen.setSingleShot(True)
		self.timerScreen.timeout.connect(self.updateImage)
		self.timerScreen.start()
class DatasetGui(QtWidgets.QWidget):
	
	utils = Utils()
	featureExtractor = FeatureExtractor()
	bpn = BPNHandler(True)
	accuracy = accuracy.Accuracy()
	
	
	# Constructor of the DatasetGui class
	# 
	# @param	None
	# @return	None
	def __init__(self):
		super(DatasetGui, self).__init__()
		self.setWindowTitle("Pointing Gesture Recognition - Dataset recording")
		
		# Retrieve all settings
		self.settings = Settings()
		
		# Load sounds
		self.countdownSound = QtMultimedia.QSound(self.settings.getResourceFolder()+"countdown.wav")
		self.countdownEndedSound = QtMultimedia.QSound(self.settings.getResourceFolder()+"countdown-ended.wav")
		

		# Get the context and initialise it
		self.context = Context()
		self.context.init()

		# Create the depth generator to get the depth map of the scene
		self.depth = DepthGenerator()
		self.depth.create(self.context)
		self.depth.set_resolution_preset(RES_VGA)
		self.depth.fps = 30

		# Create the image generator to get an RGB image of the scene
		self.image = ImageGenerator()
		self.image.create(self.context)
		self.image.set_resolution_preset(RES_VGA)
		self.image.fps = 30

		# Create the user generator to detect skeletons
		self.user = UserGenerator()
		self.user.create(self.context)

		# Initialise the skeleton tracking
		skeleton.init(self.user)

		# Start generating
		self.context.start_generating_all()
		print "Starting to detect users.."
		
		
		# Create a new dataset item
		self.data = Dataset()
		
		
		# Create a timer for an eventual countdown before recording the data
		self.countdownTimer = QtCore.QTimer()
		self.countdownRemaining = 10
		self.countdownTimer.setInterval(1000)
		self.countdownTimer.setSingleShot(True)
		self.countdownTimer.timeout.connect(self.recordCountdown)
		
		# Create a timer to eventually record data for a heat map
		self.heatmapRunning = False
		self.heatmapTimer = QtCore.QTimer()
		self.heatmapTimer.setInterval(10)
		self.heatmapTimer.setSingleShot(True)
		self.heatmapTimer.timeout.connect(self.recordHeatmap)
		
		
		# Create the global layout
		self.layout = QtWidgets.QVBoxLayout(self)
		
		# Create custom widgets to hold sensor's images
		self.depthImage = SensorWidget()
		self.depthImage.setGeometry(10, 10, 640, 480)
		
		# Add these custom widgets to the global layout
		self.layout.addWidget(self.depthImage)
		
		# Hold the label indicating the number of dataset taken
		self.numberLabel = QtWidgets.QLabel()
		self.updateDatasetNumberLabel()
		
		# Create the acquisition form elements
		self.createAcquisitionForm()
		
		
		# Register a dialog window to prompt the target position
		self.dialogWindow = DatasetDialog(self)
		
		
		# Allow to save the data when the right distance is reached
		self.recordIfReady = False
		
		
		# Create and launch a timer to update the images
		self.timerScreen = QtCore.QTimer()
		self.timerScreen.setInterval(30)
		self.timerScreen.setSingleShot(True)
		self.timerScreen.timeout.connect(self.updateImage)
		self.timerScreen.start()
		
	
	# Update the depth image displayed within the main window
	# 
	# @param	None
	# @return	None
	def updateImage(self):
		# Update to next frame
		self.context.wait_and_update_all()
		
		# Extract informations of each tracked user
		self.data = skeleton.track(self.user, self.depth, self.data)
		
		# Get the whole depth map
		self.data.depth_map = np.asarray(self.depth.get_tuple_depth_map()).reshape(480, 640)
		
		# Create the frame from the raw depth map string and convert it to RGB
		frame = np.fromstring(self.depth.get_raw_depth_map_8(), np.uint8).reshape(480, 640)
		frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
	
		# Get the RGB image of the scene
		self.data.image = np.fromstring(self.image.get_raw_image_map_bgr(), dtype=np.uint8).reshape(480, 640, 3)
		
		# Will be used to specify the depth of the current hand wished
		currentDepth, showCurrentDepth = 0, ""
		
		
		if len(self.user.users) > 0 and len(self.data.skeleton["head"]) > 0:
			# Highlight the head
			ui.drawPoint(frame, self.data.skeleton["head"][0], self.data.skeleton["head"][1], 5)
    		
			# Display lines from elbows to the respective hands
			ui.drawElbowLine(frame, self.data.skeleton["elbow"]["left"], self.data.skeleton["hand"]["left"])
			ui.drawElbowLine(frame, self.data.skeleton["elbow"]["right"], self.data.skeleton["hand"]["right"])
			
			# Get the pixel's depth from the coordinates of the hands
			leftPixel = self.utils.getDepthFromMap(self.data.depth_map, self.data.skeleton["hand"]["left"])
			rightPixel = self.utils.getDepthFromMap(self.data.depth_map, self.data.skeleton["hand"]["right"])
			
			if self.data.hand == self.settings.LEFT_HAND:
				currentDepth = leftPixel
			elif self.data.hand == self.settings.RIGHT_HAND:
				currentDepth = rightPixel
			
			# Get the shift of the boundaries around both hands
			leftShift = self.utils.getHandBoundShift(leftPixel)
			rightShift = self.utils.getHandBoundShift(rightPixel)
    		
			# Display a rectangle around both hands
			ui.drawHandBoundaries(frame, self.data.skeleton["hand"]["left"], leftShift, (50, 100, 255))
			ui.drawHandBoundaries(frame, self.data.skeleton["hand"]["right"], rightShift, (200, 70, 30))
		
		
		# Record the current data if the user is ready
		if self.recordIfReady:
			cv2.putText(frame, str(self.data.getWishedDistance()), (470, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (252, 63, 253), 5)
			
			if self.data.getWishedDistance()>=int(currentDepth)-10 and self.data.getWishedDistance()<=int(currentDepth)+10:
				self.record([])
				self.recordIfReady = False
			else:
				if int(currentDepth)<self.data.getWishedDistance():
					showCurrentDepth = str(currentDepth)+" +"
				else:
					showCurrentDepth = str(currentDepth)+" -"
		else:
			showCurrentDepth = str(currentDepth)
			
		cv2.putText(frame, showCurrentDepth, (5, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (50, 100, 255), 5)
		
		# Update the frame
		self.depthImage.setPixmap(ui.convertOpenCVFrameToQPixmap(frame))
		
		self.timerScreen.start()
	
	
	# Update the label indicating the number of dataset elements saved so far for the current type
	# 
	# @param	None
	# @return	None
	def updateDatasetNumberLabel(self):
		if self.data.type == Dataset.TYPE_POSITIVE:
			self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder(self.settings.getPositiveFolder())))
		elif self.data.type == Dataset.TYPE_NEGATIVE:
			self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder(self.settings.getNegativeFolder())))
		elif self.data.type == Dataset.TYPE_ACCURACY:
			self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder(self.settings.getAccuracyFolder())))
		else:
			self.numberLabel.setText("Dataset #%d" % (self.utils.getFileNumberInFolder(self.settings.getDatasetFolder())))
		
	
	# Record the actual informations
	# 
	# @param	obj					Initiator of the event
	# @return	None
	def record(self, obj):
		# If the user collects data to check accuracy, prompts additional informations
		if self.data.type == Dataset.TYPE_ACCURACY:
			self.saveForTarget()
		# If the user collects data for a heat map, let's do it
		elif self.data.type == Dataset.TYPE_HEATMAP:
			# The same button will be used to stop recording
			if not self.heatmapRunning:
				self.startRecordHeatmap()
			else:
				self.stopRecordHeatmap()
		else:
			# Directly save the dataset and update the label number
			self.data.save()
			self.countdownEndedSound.play()
			self.updateDatasetNumberLabel()
	
	
	# Handle a countdown as a mean to record the informations with a delay
	# 
	# @param	None
	# @return	None
	def recordCountdown(self):
		# Decrease the countdown and check if it needs to continue
		self.countdownRemaining -= 1
		
		if self.countdownRemaining <= 0:
			# Re-initialise the timer and record the data
			self.countdownTimer.stop()
			self.countdownButton.setText("Saving..")
			self.countdownRemaining = 10
			self.record([])
		else:
			self.countdownTimer.start()
			self.countdownSound.play()
		
		# Display the actual reminaining
		self.countdownButton.setText("Save in %ds"%(self.countdownRemaining))
	
	
	# Record a heatmap representation of the informations by successive captures
	# 
	# @param	None
	# @return	None
	def recordHeatmap(self):
		if self.data.hand == self.settings.NO_HAND:
			print "Unable to record as no hand is selected"
			return False
		
		if len(self.user.users) > 0 and len(self.data.skeleton["head"]) > 0:
			# Input the data into the feature extractor
			result = self.bpn.check(self.featureExtractor.getFeatures(self.data))
			
			# Add the depth of the finger tip
			point = self.featureExtractor.fingerTip[result[1]]
			point.append(self.utils.getDepthFromMap(self.data.depth_map, point))
			
			# Verify that informations are correct
			if point[0]!=0 and point[1]!=0 and point[2]!=0:
				# Add the result of the neural network
				point.append(result[0])
				
				self.heatmap.append(point)
				self.countdownSound.play()
			
		# Loop timer
		self.heatmapTimer.start()
	
	
	# Start the recording of the heatmap
	# 
	# @param	None
	# @return	None
	def startRecordHeatmap(self):
		self.saveButton.setText("Stop recording")
		self.heatmapRunning = True
		self.heatmapTimer.start()
		
	
	# Stop the recording of the heatmap
	# 
	# @param	None
	# @return	None
	def stopRecordHeatmap(self):
		self.heatmapTimer.stop()
		self.heatmapRunning = False
		self.countdownEndedSound.play()
		
		self.saveButton.setText("Record")
		
		self.accuracy.showHeatmap(self.heatmap, "front")
		self.heatmap = []
		
		
	# Raise a flag to record the informations when the chosen distance will be met
	# 
	# @param	None
	# @return	None
	def startRecordWhenReady(self):
		self.recordIfReady = True
	
	
	# Hold the current informations to indicate the position of the target thanks to the dialog window
	# 
	# @param	None
	# @return	None
	def saveForTarget(self):
		# Freeze the data
		self.timerScreen.stop()
		self.countdownEndedSound.play()
		
		# Translate the depth values to a frame and set it in the dialog window
		frame = np.fromstring(self.depth.get_raw_depth_map_8(), np.uint8).reshape(480, 640)
		frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
		self.dialogWindow.setFrame(frame)
	
		# Prompt the position of the target
		self.dialogWindow.exec_()
	
	
	# Toggle the type of dataset chosen
	# 
	# @param	value				Identifier of the new type of dataset
	# @return	None
	def toggleType(self, value):
		self.data.toggleType(value)
		
		if value == self.data.TYPE_HEATMAP:
			self.saveButton.setText("Record")
			self.countdownButton.setText("Record in %ds"%(self.countdownRemaining))
			self.readyButton.setEnabled(False)
			
			# Create an array to hold all points
			self.heatmap = []
		else:
			self.updateDatasetNumberLabel()
			if hasattr(self, 'saveButton'):
				self.saveButton.setText("Save")
				self.countdownButton.setText("Save in %ds"%(self.countdownRemaining))
				self.readyButton.setEnabled(True)
	
	
	# Create the acquisition form of the main window
	# 
	# @param	None
	# @return	None
	def createAcquisitionForm(self):
		globalLayout = QtWidgets.QHBoxLayout()
		vlayout = QtWidgets.QVBoxLayout()
		
		# Drop down menu of the distance to record the informations when the pointing hand meet the corresponding value
		hlayout = QtWidgets.QHBoxLayout()
		label = QtWidgets.QLabel("Distance")
		label.setFixedWidth(100)
		comboBox = QtWidgets.QComboBox()
		comboBox.currentIndexChanged.connect(self.data.toggleDistance)
		comboBox.setFixedWidth(200)
		comboBox.addItem("550")
		comboBox.addItem("750")
		comboBox.addItem("1000")
		comboBox.addItem("1250")
		comboBox.addItem("1500")
		comboBox.addItem("1750")
		comboBox.addItem("2000")
		comboBox.setCurrentIndex(0)
		hlayout.addWidget(label)
		hlayout.addWidget(comboBox)
		vlayout.addLayout(hlayout)
		
		# Drop down menu to select the type of hand of the dataset
		hlayout = QtWidgets.QHBoxLayout()
		label = QtWidgets.QLabel("Pointing hand")
		label.setFixedWidth(100)
		comboBox = QtWidgets.QComboBox()
		comboBox.currentIndexChanged.connect(self.data.toggleHand)
		comboBox.setFixedWidth(200)
		comboBox.addItem("Left")
		comboBox.addItem("Right")
		comboBox.addItem("None")
		comboBox.setCurrentIndex(0)
		hlayout.addWidget(label)
		hlayout.addWidget(comboBox)
		vlayout.addLayout(hlayout)
		
		# Drop down menu of the dataset type
		hlayout = QtWidgets.QHBoxLayout()
		label = QtWidgets.QLabel("Type")
		label.setFixedWidth(100)
		comboBox = QtWidgets.QComboBox()
		comboBox.currentIndexChanged.connect(self.toggleType)
		comboBox.setFixedWidth(200)
		comboBox.addItem("Positive")
		comboBox.addItem("Negative")
		comboBox.addItem("Accuracy")
		comboBox.addItem("Heat map")
		comboBox.setCurrentIndex(0)
		hlayout.addWidget(label)
		hlayout.addWidget(comboBox)
		vlayout.addLayout(hlayout)
		
		globalLayout.addLayout(vlayout)
		vlayout = QtWidgets.QVBoxLayout()
		
		self.numberLabel.setAlignment(QtCore.Qt.AlignCenter)
		vlayout.addWidget(self.numberLabel)
		
		# Action buttons to record the way that suits the most
		hLayout = QtWidgets.QHBoxLayout()
		self.readyButton = QtWidgets.QPushButton('Save when ready', clicked=self.startRecordWhenReady)
		self.saveButton = QtWidgets.QPushButton('Save', clicked=self.record)
		hLayout.addWidget(self.readyButton)
		vlayout.addLayout(hLayout)
		
		item_layout = QtWidgets.QHBoxLayout()
		self.countdownButton = QtWidgets.QPushButton("Save in %ds"%(self.countdownRemaining), clicked=self.countdownTimer.start)
		self.saveButton = QtWidgets.QPushButton('Save', clicked=self.record)
		item_layout.addWidget(self.countdownButton)
		item_layout.addWidget(self.saveButton)
		vlayout.addLayout(item_layout)
		
		globalLayout.addLayout(vlayout)
		self.layout.addLayout(globalLayout)
Exemple #10
0
    if not os.path.isdir(name_exp + "/models"): os.mkdir(name_exp + "/models")

    #CUDA
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda:0" if use_cuda else "cpu")
    torch.backends.cudnn.benchmark = True

    params = {'batch_size': 64, 'shuffle': True, 'num_workers': 6}

    #Dataset
    partition = create_partition_dict(list_utt_id, [])
    spk_id_att_labels = txt_2_dict(att_labels_txt)
    labels = create_labels_dict(list_utt_id, [], spk_id_att_labels)

    #Generators
    training_set = Dataset(partition['train'], labels, data_file, prob_file)

    generator = data.DataLoader(training_set, **params)

    # Layer dimension
    input_dim = 512
    latent_dim = 128

    input_dim_discrim = latent_dim
    hidden_dim_discrim = 128

    model_ae = Autoencoder(input_dim, latent_dim)
    optimizer_ae = torch.optim.SGD(model_ae.parameters(),
                                   lr=0.0001,
                                   momentum=0.9)
    model_ae.to(device)