def run_calibration(n_rounds, current_period=0, verbose=0): if not os.path.isdir('../calibrations'): os.makedirs('../calibrations') map = Map() best_score = None for i in range(n_rounds): if i % 10 == 0: print(f'round {i}...') evaluations = [] array_params, pdict = build_parameters(current_period, verbose) map.from_arrays(**array_params) for _ in range(N_PERIODS): for _ in range(pdict['n_moves_per_period']): map.make_move() map.forward_all_cells() state_ids, state_numbers = map.get_states_numbers() evaluations.append((state_ids, state_numbers)) score = evaluate(evaluations, DAY, N_PERIODS) if best_score is None or ( score['hosp']['err'] <= best_score['hosp']['err'] and score['icu']['err'] <= best_score['icu']['err']): fpath = os.path.join(CALIBRATION_DIR, f'{i}.npy') to_save = { 'score': score, 'params': array_params, 'rt': map.get_r_factors(), 'pdict': pdict } print(f'New best score found: {score}, saved under {fpath}') print(f"corresponding pdict:\n{pdict}") best_score = score np.save(fpath, to_save) map.save(os.path.join('maps', 'week1'))
def run_calibration(n_rounds, current_period=0, verbose=0): if not os.path.isdir('../calibrations'): os.makedirs('../calibrations') memory_error = False map = Map() best_score = None for i in range(n_rounds): if i%10 == 0: print(f'round {i}...') evaluations = [] array_params, pdict = build_parameters(current_period, verbose) try: map.from_arrays(**array_params) except: print('Memory error') memory_error = True pass if memory_error: memory_error = False continue for prd in range(N_PERIODS): for _ in range(pdict['n_moves_per_period']): map.make_move(prop_cont_factor=pdict['prop_cont_factor']) map.forward_all_cells() state_ids, state_numbers = map.get_states_numbers() # Check if we are already in the good range at mid time evaluation = (state_ids, state_numbers) if prd == 6: ind_asymptomatic = np.where(evaluation[0] == 1)[0][0].astype(np.uint32) n_asymptomatic = evaluation[1][ind_asymptomatic] evaluations.append(evaluation) score, progressions = evaluate_move(evaluations) if best_score is None or score < best_score: fpath = os.path.join(CALIBRATION_DIR, f'move_3e_{i}.npy') to_save = {'score': score, 'params': array_params, 'pdict': pdict} print(f'New best score found: {score}, saved under {fpath}') print(f'Corresponding progressions: {progressions}') print(f'corresponding params:') pprint(pdict) best_score = score np.save(fpath, to_save)
# agents move now `f_unmove`x less than before lockdown f_unmove = 1 p_moves = np.load(os.path.join(map_path, 'p_moves.npy')).flatten() n_p_moves = p_moves.shape[0] p_move = pdict['avg_p_move'] / f_unmove p_moves = get_p_moves(n_p_moves, p_move) print(f'DEBUG: mean of p_move: {np.mean(p_moves)}') res = {} map = Map() map.load(map_path) # map.set_verbose(3) map.set_p_moves(p_moves) map.set_unsafeties(unsafeties) new_hosps = [] for i in range(N_PERIODS): res[i] = {} for _ in range(n_moves_per_period): map.make_move(p_mask=.3) new_states = map.forward_all_cells(tracing_rate=0) new_hosp = new_states[new_states == 4].shape[0] new_hosps.append(new_hosp) state_ids, state_numbers = map.get_states_numbers() for j in range(state_ids.shape[0]): res[i][state_ids[j]] = state_numbers[j] pprint(res) print(new_hosps)
new_state_id = 1 print( f'Injecting {N_INFECTED_AGENTS_START} contaminated agents out of {N_AGENTS} in map' ) map.change_state_agents(np.array([infected_agent_id]), np.array([new_state_id])) stats = {} t_start = time() for i in range(N_PERIODS): print(f'starting period {i}...') t0 = time() for j in range(N_MOVES_PER_PERIOD): t_ = time() map.make_move() map.forward_all_cells() states_ids, state_numbers = map.get_states_numbers() stats[i] = { states_ids[k]: state_numbers[k] for k in range(len(states_ids)) } if 5 in stats: print() print(f'period {i} computed in {time() - t0}s') print(f'duration: {time() - t_start}s') print(stats)