def main(trainset, window, save_todir): XPL = save_todir+'file.xpl' #building xpl file ensemble.build_xpl(trainset,window,XPL) #reading the xpl file xpl_data = xplutil.read_xpl(XPL) decision = cl.make_decision(xpl_data.freq0,xpl_data.freq1) size = xpl_data.winshape[0]*xpl_data.winshape[1] xplutil.write_minterm_file(save_todir+'filename.mtm', np.array([range(size)]), xpl_data.winshape, xpl_data.data, decision)
def main(trainset, window, save_todir): XPL = window+'.xpl' #building xpl file ensemble.build_xpl(trainset,window,XPL) #reading xpl file xpl_data = xplutil.read_xpl(XPL) indices = np.array([0,1,3,4,5,7,8]) w0 = xpl_data.freq0.copy() w1 = xpl_data.freq1.copy() w0, w1 = cl.normalize_table(w0, w1) hash, unique_array = project(xpl_data.data, indices) sum0 = [] sum1 = [] for row in unique_array: arr = hash.get(tuple(row.reshape(1,-1)[0])) indexes = tuple(arr[0].reshape(1,-1)[0]) sum0.append(w0[[np.array(indexes)]].sum()) sum1.append(w1[[np.array(indexes)]].sum()) decision = cl.make_decision(sum0, sum1) xplutil.write_minterm_file(save_todir+"mtmFile.mtm",indices, xpl_data.winshape, unique_array,decision)
def update_weights_setup(): w0 = np.random.uniform(size=100000) w1 = np.random.uniform(size=100000) dec = cl.make_decision(w0, w1) return w0, w1, dec