def load_test(data_file_names): # load test data masks_path = '/media/stim-scratch/berisha/00-annotations/hd/right/com-right/' classimages = sorted(glob.glob(masks_path + '*.png')) # load the class file names C = classify.filenames2class( classimages) # generate the class images for testing C = C.astype(np.uint32) bool_mask = np.sum(C.astype(np.uint32), 0) # get number of classes num_classes = C.shape[0] for i in range(1, num_classes): C[i, :, :] *= i + 1 total_mask = np.sum(C.astype(np.uint32), 0) # validation mask Etest = envi.envi(data_file_names[0], mask=total_mask) N = np.count_nonzero(total_mask) # set the batch size Tv = [] # initialize the target array to empty x_test = Etest.loadbatch(N) y_test = total_mask.flat[np.flatnonzero( total_mask)] # get the indices of valid pixels Etest.close() return x_test, y_test
def load_train(data_file_names): # load train data masks_path = '/media/stim-scratch/berisha/00-annotations/hd/left/com-left/' classimages = sorted(glob.glob(masks_path + '*.png')) # load the class file names C = classify.filenames2class( classimages) # generate the class images for training # open the ENVI file for reading, use the validation image for batch access Etrain = envi.envi(data_file_names[0]) # x_train, y_train = Etrain.loadtrain(C) x_train, y_train = Etrain.loadtrain_balance(C, num_samples=100000) Etrain.close() return x_train, y_train
===================== Optimal params comparison ===================== A comparison of several classifiers using ('optimal' params) from scikit-learn on FTIR data. Code source: Sebastian Berisha """ # load train data data_path = '/media/stim-processed/berisha/breast-processing/lm/br1003/no-mnf/new-cnn/' masks_path = '/media/stim-processed/berisha/breast-processing/lm/br1003/masks/no-mnf-bcemn/' classimages = sorted(glob.glob(masks_path + '*.png')) # load the class file names C = classify.filenames2class( classimages) # generate the class images for training # open the ENVI file for reading, use the validation image for batch access Etrain = envi.envi(data_path + 'br1003-br2085b-bas-nor-fin-bip-pca16') #x_train, y_train = Etrain.loadtrain(C) x_train, y_train = Etrain.loadtrain_balance(C, num_samples=60000) Etrain.close() # load test data data_path = '/media/stim-processed/berisha/breast-processing/lm/br1003/no-mnf/brc961-proj/brc961-proj/new-cnn/' masks_path = '/media/stim-processed/berisha/breast-processing/lm/brc961/masks/no-mnf-bcemn/' classimages = sorted(glob.glob(masks_path + '*.png')) # load the class file names C = classify.filenames2class( classimages) # generate the class images for testing