training_dict = classify_library.toDict(training)
testing_dict = classify_library.toDict(testing)

####################################################################
####################################################################
################################## Script starts




X_train_vids = classify_library.limited_input1(training_dict, 1000)
X_test_vids = classify_library.limited_input1(testing_dict, 1000)


#GET THE TRAINING AND TESTING DATA.
X_train, Y_train = classify_library.make_FV_matrix(X_train_vids,training_output, class_index)
X_test, Y_test = classify_library.make_FV_matrix(X_test_vids,testing_output, class_index)

#PCA reduction
training_PCA = classify_library.limited_input1(training_dict,40)
X_PCA, _ = classify_library.make_FV_matrix(training_PCA,training_output, class_index)

n_components = 1000
pca = PCA(n_components=n_components)
pca.fit(X_PCA)
X_train_PCA = pca.transform(X_train)
X_test_PCA = pca.transform(X_test)

#Exhaustive Grid Search

C = [1, 10, 50, 100, 1000]
Exemple #2
0
        if filename.endswith('.fisher.npz')
    ]

    training_dict = classify_library.toDict(training)
    testing_dict = classify_library.toDict(testing)

    ####################################################################
    ####################################################################
    ################################## Script starts

    X_train_vids = classify_library.limited_input1(training_dict, 1000)
    X_test_vids = classify_library.limited_input1(testing_dict, 1000)

    #GET THE TRAINING AND TESTING DATA.
    X_train, Y_train = classify_library.make_FV_matrix(X_train_vids,
                                                       training_output,
                                                       class_index)
    X_test, Y_test = classify_library.make_FV_matrix(X_test_vids,
                                                     testing_output,
                                                     class_index)

    X_total = np.concatenate((X_train, X_test), 0)
    Y_total = np.concatenate((Y_train, Y_test), 0)

    if not args.no_pca:
        #PCA reduction
        training_PCA = classify_library.limited_input1(training_dict, 40)
        X_PCA, _ = classify_library.make_FV_matrix(training_PCA,
                                                   training_output,
                                                   class_index)
Exemple #3
0
print(train_vid_class.keys()[:5])
print('len testing:', len(testing))
training_n_dict = classify_library.toDict(training_n, train_vid_class)
training_s_dict = classify_library.toDict(training_s, train_vid_class)
testing_dict = classify_library.toDict(testing, test_vid_class)

# input('...')

#GET THE TRAINING AND TESTING DATA.


X_train_n_vids = classify_library.limited_input1(training_n_dict, args.per_class_num)
X_train_s_vids = classify_library.limited_input1(training_s_dict, args.per_class_num)
X_test_vids = classify_library.limited_input1(testing_dict, args.per_class_num)
# X_train_vids, X_test_vids = classify_library.limited_input(training_dict, testing_dict, 101, 24)
X_n_train, Y_n_train = classify_library.make_FV_matrix(X_train_n_vids, 
        training_n_output, class_index, train_vid_class)
X_s_train, Y_s_train = classify_library.make_FV_matrix(X_train_s_vids, 
        training_s_output, class_index, train_vid_class)
X_test, Y_test = classify_library.make_FV_matrix(X_test_vids, 
        testing_output, class_index, test_vid_class)

# pdb.set_trace()

training_n_PCA = classify_library.limited_input1(training_n_dict,1)
training_s_PCA = classify_library.limited_input1(training_s_dict,1)


if not args.PCA_dim:
    X_n_train_PCA = X_n_train.tolist()
    X_s_train_PCA = X_s_train.tolist()
    X_n_test_PCA = X_test.tolist()