def main(): print('Initializing main function') file_path = '/home/mauricio/Videos/mjpeg/11-00-00.mjpeg' print('Initializing instance') open_pose = ClassOpenPose() images = ClassMjpegReader.process_video(file_path) print('Size list') print(len(images)) print('Done') print('Reading list using opencv') cv2.namedWindow('test') for elem in images: image = elem[0] ticks = elem[1] image_np = np.frombuffer(image, dtype=np.uint8) print(ticks) print(len(image)) image_cv = cv2.imdecode(image_np, cv2.IMREAD_ANYCOLOR) image_recognize = open_pose.recognize_image_draw(image_cv) cv2.imshow('test', image_recognize) cv2.waitKey(10) cv2.destroyAllWindows() print('Done!')
def main(): print('Initializing main function') # Initialing instances instance_pose = ClassOpenPose() filename = '/home/mauricio/Pictures/walk.jpg' image = cv2.imread(filename) arr = instance_pose.recognize_image(image) if len(arr) != 1: raise Exception( 'There is more than one person in the image: {0}'.format(len(arr))) per_arr = arr[0] print(per_arr) ClassDescriptors.draw_pose(image, per_arr, min_score) cv2.namedWindow('main_window', cv2.WINDOW_AUTOSIZE) cv2.imshow('main_window', image) cv2.waitKey(0) cv2.destroyAllWindows() print('Done!')
def pre_process_images(list_folders_scores, recalculate): print('Start pre_processing images') # Loading instances instance_pose = ClassOpenPose() for folder, min_score in list_folders_scores: for file in os.listdir(folder): full_path = os.path.join(folder, file) extension = ClassUtils.get_filename_extension(full_path) if extension != '.jpg': print('Ignoring file {0}'.format(full_path)) continue file_no_ext = ClassUtils.get_filename_no_extension(full_path) arr_file_name = os.path.join(folder, '{0}.json'.format(file_no_ext)) # If image recalculation if not recalculate: if os.path.isfile(arr_file_name): print('File already processed {0}'.format(full_path)) continue # Processing file print('Processing file {0}'.format(full_path)) image = cv2.imread(full_path) arr, img_draw = instance_pose.recognize_image_tuple(image) arr_pass = list() # Checking vector integrity for all elements # Verify there is at least one arm and one leg for elem in arr: if ClassUtils.check_vector_integrity_part(elem, min_score): arr_pass.append(elem) # If there is more than one person with vector integrity if len(arr_pass) != 1: for elem in arr_pass: pt1, pt2 = ClassUtils.get_rectangle_bounds(elem, ClassUtils.MIN_POSE_SCORE) cv2.rectangle(img_draw, pt1, pt2, (0, 0, 255), 3) cv2.namedWindow('main_window') cv2.imshow('main_window', img_draw) print(arr) print(arr_pass) cv2.waitKey(0) cv2.destroyAllWindows() raise Exception('Invalid len: {0} file {1}'.format(len(arr_pass), full_path)) person_arr = arr_pass[0] arr_str = json.dumps(person_arr.tolist()) with open(arr_file_name, 'w') as text_file: text_file.write(arr_str) print('Done!')
def main(): print('Initializing main function') # Initializing instances instance_pose = ClassOpenPose() # Withdrawing Tk window Tk().withdraw() # Loading folder from element in list init_dir = '/home/mauricio/Pictures/Poses' options = {'initialdir': init_dir} dir_name = filedialog.askdirectory(**options) if not dir_name: print('Directory not selected') else: print('Selected dir: {0}'.format(dir_name)) list_files = os.listdir(dir_name) cv2.namedWindow('main_window', cv2.WND_PROP_AUTOSIZE) index = 0 print('Press arrows to move, ESC to exit') while True: file = list_files[index] full_path = os.path.join(dir_name, file) print('Loading image {0}'.format(full_path)) image = cv2.imread(full_path) arr, pro_img = instance_pose.recognize_image_tuple(image) cv2.imshow('main_window', pro_img) key = cv2.waitKey(0) if key == 52: # Left arrow index -= 1 if index < 0: index = 0 elif key == 54: # Right arrow index += 1 if index == len(list_files): index = len(list_files) - 1 elif key == 27: # Esc break print('Done!')
def test_full_color_compare(): print('Process lab adjustment') # Loading instances instance_pose = ClassOpenPose() # Loading images image1, image2, pose1, pose2 = ClassDescriptors.load_images_comparision( instance_pose, min_score) # Performing color comparision upper1, lower1 = ClassDescriptors.process_colors_person(pose1, min_score, image1, decode_img=False) upper2, lower2 = ClassDescriptors.process_colors_person(pose2, min_score, image2, decode_img=False) # Performing custom comparison first diff_upper, diff_lower, delta = ClassUtils.compare_colors( upper1, upper2, lower1, lower2) print('Diff upper: {0}'.format(diff_upper)) print('Diff lower: {0}'.format(diff_lower)) print('Delta: {0}'.format(delta)) # Showing images cv2.namedWindow('main_window', cv2.WND_PROP_AUTOSIZE) cv2.imshow('main_window', np.hstack((image1, image2))) cv2.waitKey(0) print('Done!')
def get_transformed_points(): min_score = 0.05 instance_pose = ClassOpenPose() res = ClassDescriptors.load_images_comparision_ext(instance_pose, min_score, load_one_img=True) person_arr = res['pose1'] descriptors = ClassDescriptors.get_person_descriptors(person_arr, min_score, cam_number=0, image=None, calib_params=None, decode_img=False, instance_nn_pose=None) transformed_points = descriptors['transformedPoints'] print(transformed_points) # Save pose for debugging purposes re_scale_factor = 100 new_points = ClassDescriptors.re_scale_pose_factor(transformed_points, re_scale_factor, min_score) img_pose = ClassDescriptors.draw_pose_image(new_points, min_score, is_transformed=True) cv2.namedWindow('main_window', cv2.WINDOW_AUTOSIZE) cv2.imshow('main_window', img_pose) cv2.waitKey() cv2.destroyAllWindows() print('Done!')
def evaluating_fast_nn(): print('Initializing evaluating fast nn') classes = 8 hidden_layers = 40 instance_nn = ClassNN(model_dir=ClassNN.model_dir_pose, classes=classes, hidden_number=hidden_layers) instance_pose = ClassOpenPose() info = ClassDescriptors.load_images_comparision_ext(instance_pose, min_score=0.05, load_one_img=True) pose1 = info['pose1'] items = ClassDescriptors.get_person_descriptors(pose1, 0.05) # Valid pose for detection data_to_add = list() data_to_add += items['angles'] data_to_add += ClassUtils.get_flat_list(items['transformedPoints']) data_np = np.asanyarray(data_to_add, dtype=np.float) result = instance_nn.predict_model_fast(data_np) print(result) key_pose = result['classes'] probability = result['probabilities'][key_pose] print('Key pose: {0}'.format(key_pose)) print('Probability: {0}'.format(probability)) print('Done!')
def process_btf(): print('Processing BTF transformation') # Loading instances instance_pose = ClassOpenPose() image1, image2, pose1, pose2 = ClassDescriptors.load_images_comparision( instance_pose, min_score) hists1 = ClassDescriptors.get_color_histograms(pose1, min_score, image1, decode_img=False) hists2 = ClassDescriptors.get_color_histograms(pose2, min_score, image2, decode_img=False) # Plotting # plot_histograms(hists1) # Showing first images without transformation cv2.namedWindow('main_window', cv2.WINDOW_AUTOSIZE) upper1, lower1 = ClassDescriptors.process_colors_person(pose1, min_score, image1, decode_img=False) upper2, lower2 = ClassDescriptors.process_colors_person(pose2, min_score, image2, decode_img=False) print('Diff1: {0}'.format(ClassUtils.get_color_diff_rgb(upper1, upper2))) print('Diff2: {0}'.format(ClassUtils.get_color_diff_rgb(lower1, lower2))) cv2.imshow('main_window', np.hstack((image1, image2))) print('Press any key to continue') cv2.waitKey(0) # Perform image transformation image_tr = ClassDescriptors.transform_image(image2, hists2, hists1) upper1, lower1 = ClassDescriptors.process_colors_person(pose1, min_score, image1, decode_img=False) upper2, lower2 = ClassDescriptors.process_colors_person(pose2, min_score, image_tr, decode_img=False) print('Diff1: {0}'.format(ClassUtils.get_color_diff_rgb(upper1, upper2))) print('Diff2: {0}'.format(ClassUtils.get_color_diff_rgb(lower1, lower2))) cv2.imshow('main_window', np.hstack((image1, image_tr))) print('Press any key to continue') cv2.waitKey(0) cv2.destroyAllWindows() print('Done!')
def test_color_compare(): print('Test color comparision') print('Loading image comparision') # Loading instances instance_pose = ClassOpenPose() # Avoid to open two prompts obj_img = ClassDescriptors.load_images_comparision_ext(instance_pose, min_score, load_one_img=True) hist_pose1 = obj_img['listPoints1'] list_process = list() # Iterating in examples folder for root, _, files in os.walk(EXAMPLES_FOLDER): for file in files: full_path = os.path.join(root, file) extension = ClassUtils.get_filename_extension(full_path) if extension == '.jpg': list_process.append(full_path) # Sorting list list_process.sort() list_result = list() score_max_pt = -1 for full_path in list_process: print('Processing file: {0}'.format(full_path)) json_path = full_path.replace('.jpg', '.json') with open(json_path, 'r') as f: obj_json = json.loads(f.read()) his_pose2 = obj_json['histPose'] diff = ClassDescriptors.get_kmeans_diff(hist_pose1, his_pose2) print('Diff {0}'.format(diff)) if diff <= 15: res = True else: res = False list_result.append({ 'filename': ClassUtils.get_filename_no_extension(full_path), 'score': res }) # list_result.sort(key=lambda x: x['score']) print('Printing list result') print(json.dumps(list_result, indent=2)) print('min_score: {0}'.format(score_max_pt)) print('Done!')
def get_poses_seq(folder: str, instance_nn: ClassNN, instance_pose: ClassOpenPose, only_json=False): # List all folders list_files = [] for file in os.listdir(folder): list_files.append(os.path.join(folder, file)) # Sorting elements list_files.sort() # Get elements list_desc = list() for path in list_files: ext = ClassUtils.get_filename_extension(path) if only_json: if ext != '.json': print('Ignoring file: {0}'.format(path)) continue with open(path, 'r') as file: person_arr_str = file.read() person_arr = json.loads(person_arr_str) else: if ext != '.jpg': print('Ignoring file: {0}'.format(path)) continue print('Processing file {0}'.format(path)) image = cv2.imread(path) arr = instance_pose.recognize_image(image) arr_pass = [] for person_arr in arr: if ClassUtils.check_vector_integrity_part( person_arr, min_score): arr_pass.append(person_arr) if len(arr_pass) != 1: print('Ignoring file {0} - Len arr_pass: {1}'.format( path, len(arr_pass))) continue person_arr = arr_pass[0] result_desc = ClassDescriptors.get_person_descriptors( person_arr, min_score) list_desc.append(result_desc['fullDesc']) list_desc_np = np.asarray(list_desc, np.float) results = instance_nn.predict_model_array(list_desc_np) list_classes = [] for result in results: list_classes.append(result['classes']) return list_classes
def process_single(): print('Initializing process_single') # Loading instances instance_pose = ClassOpenPose() # Opening filename init_dir = '/home/mauricio/Pictures' options = {'initialdir': init_dir} filename = askopenfilename(**options) if not filename: filename = '/home/mauricio/Pictures/Poses/left_walk/636550788328999936_420.jpg' # Reading video extension extension = os.path.splitext(filename)[1] if extension != '.jpg' and extension != '.jpeg': raise Exception('Extension is not jpg or jpeg') # Opening filename image = cv2.imread(filename) # Loading image and array arr, processed_img = instance_pose.recognize_image_tuple(image) # Showing image to generate elements cv2.namedWindow('main_window', cv2.WND_PROP_AUTOSIZE) arr_pass = list() min_score = 0.05 # Checking vector integrity for all elements # Verify there is at least one arm and one leg for elem in arr: if ClassUtils.check_vector_integrity_pos(elem, min_score): arr_pass.append(elem) if len(arr_pass) != 1: print('There is more than one person in the image') cv2.imshow('main_window', processed_img) cv2.waitKey(0) else: person_array = arr_pass[0] print('Person array: {0}'.format(person_array)) generate_descriptors(person_array, image, processed_img, min_score)
def convert_video_mjpeg(cls, file_path: str, delete_mjpeg=False): extension = os.path.splitext(file_path)[1] if extension != '.mjpeg': raise Exception('file_path must have extension .mjpeg') else: output_video = file_path.replace('.mjpeg', '.mjpegx') print('output_video: ' + output_video) # Converting first with _1 to avoid confusions file_path_temp = output_video + '_1' print('Initializing instance') open_pose = ClassOpenPose() images = ClassMjpegReader.process_video(file_path) print('Len images: ' + str(len(images))) with open(file_path_temp, 'wb') as newFile: counter = 0 for elem in images: image = elem[0] ticks = elem[1] image_np = np.frombuffer(image, dtype=np.uint8) image_cv = cv2.imdecode(image_np, cv2.IMREAD_ANYCOLOR) arr = open_pose.recognize_image( image_cv) # type: np.ndarray json_dict = {'vectors': arr.tolist()} ClassUtils.write_in_file(newFile, ticks, image, json_dict) counter += 1 if counter % 10 == 0: print('Counter: ' + str(counter)) # Deleting mjpegx file if exists and rename if os.path.exists(output_video): os.remove(output_video) # Naming new os.rename(file_path_temp, output_video) if delete_mjpeg: os.remove(file_path)
def main(): print('Initializing main function') Tk().withdraw() # Loading instances instance_pose = ClassOpenPose() # Loading filename init_dir = '/home/mauricio/Pictures/TestPlumb' options = {'initialdir': init_dir} filename = askopenfilename(**options) if not filename: filename = '/home/mauricio/Pictures/419.jpg' print('Filename: {0}'.format(filename)) image = cv2.imread(filename) arr = instance_pose.recognize_image(image) valid_arr = list() for person_arr in arr: if ClassUtils.check_vector_integrity_pos(person_arr, min_score): valid_arr.append(person_arr) if len(valid_arr) != 1: raise Exception('Invalid len for arr: {0}'.format(len(valid_arr))) person_arr = valid_arr[0] ClassDescriptors.draw_pose(image, person_arr, min_score) cv2.namedWindow('main_window', cv2.WINDOW_AUTOSIZE) cv2.imshow('main_window', image) print_distances(person_arr) cv2.waitKey() cv2.destroyAllWindows() print('Done!')
def main(): print('Initializing main function') # Initializing instances instance_pose = ClassOpenPose() folder_training_1 = '/home/mauricio/Pictures/Poses/Walk_Front' folder_training_2 = '/home/mauricio/Pictures/Poses/Vehicle' folder_training_3 = '/home/mauricio/Pictures/Poses/Tires' data_1 = get_sets_folder(folder_training_1, 0, instance_pose) data_2 = get_sets_folder(folder_training_2, 1, instance_pose) data_3 = get_sets_folder(folder_training_3, 1, instance_pose) data_training = np.asarray(data_1[0] + data_2[0] + data_3[0], dtype=np.float) label_training = np.asarray(data_1[1] + data_2[1] + data_3[1], dtype=np.int) data_eval = np.asarray(data_1[2] + data_2[2] + data_3[2], dtype=np.float) label_eval = np.asarray(data_1[3] + data_2[3] + data_3[3], dtype=np.int) print(data_training) print(label_training) print('Len data_training: {0}'.format(data_training.shape)) print('Len data_eval: {0}'.format(data_eval.shape)) classes = 3 hidden_neurons = 15 model_dir = '/tmp/nnposes/' instance_nn = ClassNN(model_dir, classes, hidden_neurons) option = input( 'Press 1 to train the model, 2 to eval, otherwise to predict') if option == '1': print('Training the model') # Delete previous folder to avoid conflicts in the training process if os.path.isdir(model_dir): # Removing directory shutil.rmtree(model_dir) instance_nn.train_model(data_training, label_training) elif option == '2': print('Eval the model') instance_nn.eval_model(data_eval, label_eval) else: print('Not implemented!') print('Done!')
def main(): print('Initializing main function') print('Initializing instance') instance = ClassOpenPose() print('Reading image') image = cv2.imread('/home/mauricio/Pictures/2_2.jpg') image2 = cv2.imread('/home/mauricio/Pictures/430.jpg') print('Recognizing image 1') arr, img_open = instance.recognize_image_tuple(image) print(arr) cv2.namedWindow('main_window', cv2.WINDOW_AUTOSIZE) cv2.imshow('main_window', img_open) cv2.waitKey() print('Recognizing image 2') arr = instance.recognize_image(image2) print(arr) print('Done generating elements!')
def main(): print('Generating angle descriptors') # Initializing instances instance_pose = ClassOpenPose() # Reading pose from dir path image = '/home/mauricio/Pictures/walk.jpg' if not os.path.exists(image): print('The path {0} does not exists'.format(image)) else: img_cv = cv2.imread(image) # Forwarding image arr, output_img = instance_pose.recognize_image_tuple(img_cv) person_array = arr[0] # Generating other descriptors # Assume image is OK shoulder_dis = ClassUtils.get_euclidean_distance_pt(person_array[1], person_array[2]) + \ ClassUtils.get_euclidean_distance_pt(person_array[1], person_array[5]) torso_dis = ClassUtils.get_euclidean_distance_pt(person_array[1], person_array[8]) # In total, we have a vector with 8 angles # We need to extract the characteristics of the 8 angles relation = shoulder_dis / torso_dis print(relation) cv2.namedWindow('main_window', cv2.WND_PROP_AUTOSIZE) cv2.imshow('main_window', output_img) cv2.waitKey(0) cv2.destroyAllWindows() print('Done!')
def process_lab_adj(): print('Process lab adjustment') # Loading instances instance_pose = ClassOpenPose() # Loading images image1, image2, pose1, pose2 = ClassDescriptors.load_images_comparision( instance_pose, min_score) # Performing color comparision upper1, lower1 = ClassDescriptors.process_colors_person(pose1, min_score, image1, decode_img=False) upper2, lower2 = ClassDescriptors.process_colors_person(pose2, min_score, image2, decode_img=False) # Performing custom comparison first diff_upper = ClassUtils.get_color_diff_rgb(upper1, upper2) diff_lower = ClassUtils.get_color_diff_rgb(lower1, lower2) print('Diff upper: {0}'.format(diff_upper)) print('Diff lower: {0}'.format(diff_lower)) # Performing lab conversion and equal L values diff_upper_lum = ClassUtils.get_color_diff_rgb_lum(upper1, upper2) diff_lower_lum = ClassUtils.get_color_diff_rgb_lum(lower1, lower2) print('Diff upper lum: {0}'.format(diff_upper_lum)) print('Diff lower lum: {0}'.format(diff_lower_lum)) # Showing images cv2.namedWindow('main_window', cv2.WND_PROP_AUTOSIZE) cv2.imshow('main_window', np.hstack((image1, image2))) cv2.waitKey(0) print('Done!')
def test_view_histogram(): print('Test view histogram') # Loading instances instance_pose = ClassOpenPose() # Loading images image1, _, pose1, _ = ClassDescriptors.load_images_comparision( instance_pose, min_score, load_one_img=True) # Drawing poses ClassDescriptors.draw_pose(image1, pose1, min_score) # Showing image cv2.namedWindow('main_window', cv2.WND_PROP_AUTOSIZE) cv2.imshow('main_window', image1) print('Press a key to continue') cv2.waitKey(0) cv2.destroyAllWindows() print('Done!')
def main(): print('Initializing main function') # Withdrawing tkinter # Loading model dirs list_folder_data = [ ('/home/mauricio/CNN/Classes/Door', 0.05), ('/home/mauricio/CNN/Classes/Tires', 0.05), ('/home/mauricio/CNN/Classes/Walk', 0.05), ] list_hmm = [] for folder_data in list_folder_data: label_name = get_label_from_folder(folder_data[0]) full_model_dir = os.path.join(hnn_model_folder, '{0}.pkl'.format(label_name)) list_hmm.append(ClassHMM(full_model_dir)) # Initializing instances instance_pose = ClassOpenPose() instance_nn = ClassNN.load_from_params(nn_model_dir) option = input('Select 1 to train, 2 to eval hmm, 3 to preprocess: ') if option == '1': print('Train hmm selection') train_hmm(list_folder_data, list_hmm, instance_nn, instance_pose) elif option == '2': eval_hmm(list_folder_data, list_hmm, instance_nn, instance_pose) elif option == '3': recalculate = False pre_process_images(instance_pose, list_folder_data, recalculate) else: print('Invalid argument: {0}'.format(option))
def main(): print('Initializing main function') print('Folder selection') folder_images = '/home/mauricio/PosesProcessed/folder_images' folder_images_draw = '/home/mauricio/PosesProcessed/folder_images_draw' Tk().withdraw() # Getting options init_dir = '/home/mauricio/Videos/Oviedo' options = {'initialdir': init_dir} dir_name = askdirectory(**options) if not dir_name: raise Exception('Directory not selected') # Create directory if does not exists if not os.path.isdir(folder_images): os.makedirs(folder_images) # Create directory if does not exists if not os.path.isdir(folder_images_draw): os.makedirs(folder_images_draw) # Initializing openpose instance instance_pose = ClassOpenPose() for root, subdirs, files in os.walk(dir_name): for file in files: full_path = os.path.join(root, file) print('Processing {0}'.format(full_path)) extension = ClassUtils.get_filename_extension(full_path) if extension == '.mjpeg': file_info = ClassMjpegReader.process_video(full_path) else: print('Extension ignored: {0}'.format(extension)) continue # Getting idcam from file id_cam = full_path.split('/')[-2] print('IdCam: {0}'.format(id_cam)) for index, info in enumerate(file_info): print('Processing {0} of {1} from {2}'.format(index, len(file_info), full_path)) frame = info[0] ticks = info[1] image_np = np.frombuffer(frame, dtype=np.uint8) image = cv2.imdecode(image_np, cv2.IMREAD_ANYCOLOR) arr, image_draw = instance_pose.recognize_image_tuple(image) min_score = 0.05 arr_pass = list() for elem in arr: if ClassUtils.check_vector_integrity_pos(elem, min_score): arr_pass.append(elem) if len(arr_pass) > 0: # Draw rectangles for all candidates for person_arr in arr_pass: pt1, pt2 = ClassUtils.get_rectangle_bounds(person_arr, min_score) cv2.rectangle(image_draw, pt1, pt2, (0, 0, 255), 5) # Overwriting 1 full_path_images = os.path.join(folder_images, '{0}_{1}.jpg'.format(ticks, id_cam)) print('Writing image {0}'.format(full_path_images)) cv2.imwrite(full_path_images, image) # Overwriting 2 full_path_draw = os.path.join(folder_images_draw, '{0}_{1}.jpg'.format(ticks, id_cam)) print('Writing image {0}'.format(full_path_images)) cv2.imwrite(full_path_draw, image_draw) print('Done!')
def main(): Tk().withdraw() instance_pose = ClassOpenPose() print('Initializing main function') list_files1 = os.listdir(base1_folder) hists_1 = read_hists(base1_folder, list_files1) list_files2 = os.listdir(base2_folder) hists_2 = read_hists(base2_folder, list_files2) cum_hists_1 = ClassDescriptors.get_cumulative_hists(hists_1) cum_hists_2 = ClassDescriptors.get_cumulative_hists(hists_2) # Processing img filename1 = '/home/mauricio/Pictures/Poses/bend_left/636453039344460032_1.jpg' filename2 = '/home/mauricio/Pictures/Poses/left_walk/636550795366450048_420.jpg' init_dir = '/home/mauricio/Pictures' options = {'initialdir': init_dir} filename1 = askopenfilename(**options) if not filename1: filename1 = '/home/mauricio/Pictures/2_1.jpg' ext1 = os.path.splitext(filename1)[1] if ext1 != '.jpg' and ext1 != '.jpeg': raise Exception('Extension1 is not jpg or jpeg') print('Loading filename 2') filename2 = askopenfilename(**options) if not filename2: filename2 = '/home/mauricio/Pictures/2_2.jpg' ext2 = os.path.splitext(filename2)[1] if ext2 != '.jpg' and ext2 != '.jpeg': raise Exception('Extension2 is not jpg or jpeg') image1 = cv2.imread(filename1) if image1 is None: raise Exception('Invalid image in filename {0}'.format(filename1)) image2 = cv2.imread(filename2) if image2 is None: raise Exception('Invalid image in filename {0}'.format(filename2)) is_json = True new_file_1 = filename1.replace('.jpeg', '.json') new_file_1 = new_file_1.replace('.jpg', '.json') new_file_2 = filename2.replace('.jpeg', '.json') new_file_2 = new_file_2.replace('.jpg', '.json') if not os.path.exists(new_file_1): print('File not found: {0}'.format(new_file_1)) is_json = False if not os.path.exists(new_file_2): print('File not found: {0}'.format(new_file_2)) is_json = False if not is_json: poses1 = instance_pose.recognize_image(image1) poses2 = instance_pose.recognize_image(image2) if len(poses1) != 1: raise Exception('Invalid len for pose1: {0}'.format(len(poses1))) if len(poses2) != 1: raise Exception('Invalid len for pose2: {0}'.format(len(poses2))) if not ClassUtils.check_vector_integrity_pos(poses1[0], min_score): raise Exception('Pose 1 not valid') if not ClassUtils.check_vector_integrity_pos(poses2[0], min_score): raise Exception('Pose 2 not valid') pose1 = poses1[0] pose2 = poses2[0] else: with open(new_file_1, 'r') as f: obj_json1 = json.loads(f.read()) with open(new_file_2, 'r') as f: obj_json2 = json.loads(f.read()) pose1 = obj_json1['vector'] pose2 = obj_json2['vector'] if not ClassUtils.check_vector_integrity_pos(pose1, min_score): raise Exception('Pose 1 not valid') if not ClassUtils.check_vector_integrity_pos(pose2, min_score): raise Exception('Pose 2 not valid') # Plotting # plot_histograms(hists1) # Showing first images without transformation cv2.namedWindow('main_window', cv2.WINDOW_AUTOSIZE) upper1, lower1 = ClassDescriptors.process_colors_person(pose1, min_score, image1, decode_img=False) upper2, lower2 = ClassDescriptors.process_colors_person(pose2, min_score, image2, decode_img=False) print('Upper1 {0} - Lower1 {0}'.format(upper1, lower1)) print('Upper2 {0} - Lower2 {0}'.format(upper2, lower2)) print('Diff1: {0}'.format(ClassUtils.get_color_diff_rgb(upper1, upper2))) print('Diff2: {0}'.format(ClassUtils.get_color_diff_rgb(lower1, lower2))) cv2.imshow('main_window', np.hstack((image1, image2))) print('Press any key to continue') cv2.waitKey(0) # Perform image transformation image_tr = ClassDescriptors.transform_image(image2, cum_hists_2, cum_hists_1) upper1, lower1 = ClassDescriptors.process_colors_person(pose1, min_score, image1, decode_img=False) upper2, lower2 = ClassDescriptors.process_colors_person(pose2, min_score, image_tr, decode_img=False) print('Diff1: {0}'.format(ClassUtils.get_color_diff_rgb(upper1, upper2))) print('Diff2: {0}'.format(ClassUtils.get_color_diff_rgb(lower1, lower2))) cv2.imshow('main_window', np.hstack((image1, image_tr))) print('Press any key to continue') cv2.waitKey(0) cv2.destroyAllWindows() print('Done!')
def process_test_color_eq(): print('Processing color eq') # Loading instances instance_pose = ClassOpenPose() im1, im2, pose1, pose2 = ClassDescriptors.load_images_comparision( instance_pose, min_score) upper1, lower1 = ClassDescriptors.process_colors_person(pose1, min_score, im1, decode_img=False) upper2, lower2 = ClassDescriptors.process_colors_person(pose2, min_score, im2, decode_img=False) img_size = 100 image1 = np.zeros((img_size, img_size, 3), np.uint8) image2 = np.zeros((img_size, img_size, 3), np.uint8) image3 = np.zeros((img_size, img_size, 3), np.uint8) image4 = np.zeros((img_size, img_size, 3), np.uint8) # Generating elements in list cv2.namedWindow('aux_window', cv2.WND_PROP_AUTOSIZE) cv2.imshow('aux_window', np.hstack((im1, im2))) # BGR format -> Generating image1[:, :] = (upper1[2], upper1[1], upper1[0]) image2[:, :] = (lower1[2], lower1[1], lower1[0]) image3[:, :] = (upper2[2], upper2[1], upper2[0]) image4[:, :] = (lower2[2], lower2[1], lower2[0]) # Performing custom comparison first diff_upper = ClassUtils.get_color_diff_rgb(upper1, upper2) diff_lower = ClassUtils.get_color_diff_rgb(lower1, lower2) print('Diff upper: {0}'.format(diff_upper)) print('Diff lower: {0}'.format(diff_lower)) cv2.namedWindow('main_window', cv2.WND_PROP_AUTOSIZE) cv2.imshow( 'main_window', np.hstack((np.vstack((image1, image2)), np.vstack((image3, image4))))) cv2.waitKey(0) # Performing lab conversion and equal L values diff_upper_lum = ClassUtils.get_color_diff_rgb_lum(upper1, upper2) diff_lower_lum = ClassUtils.get_color_diff_rgb_lum(lower1, lower2) # Transform point upper2_eq = ClassUtils.eq_lum_rgb_colors(upper1, upper2) lower2_eq = ClassUtils.eq_lum_rgb_colors(lower1, lower2) print('Diff upper lum: {0}'.format(diff_upper_lum)) print('Diff lower lum: {0}'.format(diff_lower_lum)) image3[:, :] = (upper2_eq[2], upper2_eq[1], upper2_eq[0]) image4[:, :] = (lower2_eq[2], lower2_eq[1], lower2_eq[0]) # Showing again image cv2.imshow( 'main_window', np.hstack((np.vstack((image1, image2)), np.vstack((image3, image4))))) cv2.waitKey(0) # Destroying all windows cv2.destroyAllWindows() print('Done!')
def test_color_compare_hist(perform_eq=False): print('Test color comparision') print('Loading image comparision') # Loading instances instance_pose = ClassOpenPose() ignore_json_color = False if perform_eq: ignore_json_color = True # Avoid to open two prompts obj_img = ClassDescriptors.load_images_comparision_ext( instance_pose, min_score, load_one_img=True, perform_eq=perform_eq, ignore_json_color=ignore_json_color) # Extract color comparision from image hist1 = obj_img['listPoints1'] # Generating examples folder list_process = list() for root, _, files in os.walk(EXAMPLES_FOLDER): for file in files: full_path = os.path.join(root, file) extension = ClassUtils.get_filename_extension(full_path) if extension == '.jpg': list_process.append(full_path) # Sorting list list_process.sort() """ list_result = list() score_max_pt = -1 """ for full_path in list_process: print('Processing file: {0}'.format(full_path)) json_path = full_path.replace('.jpg', '.json') with open(json_path, 'r') as f: obj_json = json.loads(f.read()) image2 = cv2.imread(full_path) if perform_eq: image2 = ClassUtils.equalize_hist(image2) if 'vector' in obj_json: pose2 = obj_json['vector'] elif 'vectors' in obj_json: pose2 = obj_json['vectors'] else: raise Exception('Invalid vector property for vector custom') hist2 = ClassDescriptors.get_points_by_pose(image2, pose2, min_score) diff = ClassDescriptors.get_kmeans_diff(hist1, hist2) # Getting mean y from image 2 - discarding purposes pt1, pt2 = ClassUtils.get_rectangle_bounds(pose2, min_score) image2_crop = image2[pt1[1]:pt2[1], pt1[0]:pt2[0]] image2_ycc = cv2.cvtColor(image2_crop, cv2.COLOR_BGR2YCrCb) mean_y = np.mean(image2_ycc[:, :, 0]) print('Diff color: {0} - Mean y: {1}'.format(diff, mean_y)) """ list_result.sort(key=lambda x: x['score']) print('Printing list result') print(list_result) print('min_score: {0}'.format(score_max_pt)) """ print('Done!')
def get_sets_folder(base_folder, label, instance_pose: ClassOpenPose): list_files = os.listdir(base_folder) # Work 70, 30 total_files = len(list_files) training = int(total_files * 70 / 100) tr_features = list() tr_labels = list() eval_features = list() eval_labels = list() for index, file in enumerate(list_files): full_name = os.path.join(base_folder, file) image = cv2.imread(full_name) if image is None: raise Exception('Error reading image: {0}'.format(full_name)) print('Processing image: {0}'.format(full_name)) arr = instance_pose.recognize_image(image) # Selecting array for list of vectors person_array = [] if len(arr) == 0: raise Exception('Invalid len for image {0}: {1}'.format( full_name, len(arr))) elif len(arr) == 1: person_array = arr[0] integrity = ClassUtils.check_vector_integrity_part( person_array, min_score) if not integrity: raise Exception( 'Invalid integrity for points in image: {0}'.format( full_name)) else: found = False for arr_index in arr: integrity = ClassUtils.check_vector_integrity_part( arr_index, min_score) if integrity: found = True person_array = arr_index break if not found: raise Exception( 'Cant find a valid person array for image {0}'.format( full_name)) results = ClassDescriptors.get_person_descriptors( person_array, min_score) if index < training: tr_features.append(results['angles']) tr_labels.append(label) else: eval_features.append(results['angles']) eval_labels.append(label) return tr_features, tr_labels, eval_features, eval_labels
def main(): print('Initializing main function') # Initializing instances instance_pose = ClassOpenPose() # Withdrawing tkinter Tk().withdraw() # Loading folder images folder_images = '/home/mauricio/PosesProcessed/folder_images' folder_images_draw = '/home/mauricio/PosesProcessed/folder_images_draw' pose_base_folder = '/home/mauricio/Pictures/PosesNew' # Reading all elements in list list_files = sorted(os.listdir(folder_images_draw)) cv2.namedWindow('main_window', cv2.WND_PROP_AUTOSIZE) index = 0 while True: file = list_files[index] full_path_draw = os.path.join(folder_images_draw, file) image_draw = cv2.imread(full_path_draw) cv2.imshow('main_window', image_draw) key = cv2.waitKey(0) print('Key pressed: {0}'.format(key)) if key == 52: # Left arrow index -= 1 if index < 0: index = 0 elif key == 54: # Right arrow index += 1 if index == len(list_files): index = len(list_files) - 1 elif key == 27: # Esc # Ask are you sure question result = messagebox.askyesno("Exit", "Are you sure to exit?") print(result) if result: break elif key == 115: # Check JSON file image_full_path = os.path.join(folder_images, file) json_path = image_full_path.replace(".jpg", ".json") if not os.path.exists(json_path): # Generating JSON array image = cv2.imread(image_full_path) arr = instance_pose.recognize_image(image).tolist() else: with open(json_path, 'r') as file: arr_str = file.read() arr = json.load(arr_str) arr_pass = [] min_score = 0.05 # Drawing candidates for elem in arr: if ClassUtils.check_vector_integrity_part(elem, min_score): arr_pass.append(elem) if len(arr_pass) == 0: print('Arr pass size equals to zero') continue elif len(arr_pass) == 1: selection_int = 0 person_arr = arr_pass[0] arr_str = json.dumps(person_arr) else: # Draw rectangles for all candidates for index_elem, person_arr in enumerate(arr_pass): pt1, pt2 = ClassUtils.get_rectangle_bounds(person_arr, min_score) cv2.rectangle(image_draw, pt1, pt2, (0, 0, 255), 5) font = cv2.FONT_HERSHEY_SIMPLEX bottom_left_corner = pt2 font_scale = 0.6 font_color = (255, 255, 255) line_type = 2 cv2.putText(image_draw, '{0}'.format(index_elem), bottom_left_corner, font, font_scale, font_color, line_type) while True: print('Select image to put') cv2.imshow('main_window', image_draw) wait_key = cv2.waitKey(0) print('Wait Key: {0}'.format(wait_key)) selection_int = ClassUtils.key_to_number(wait_key) print('Selection: {0}'.format(selection_int)) if 0 <= selection_int < len(arr_pass): break person_arr = arr_pass[selection_int] arr_str = json.dumps(person_arr) # Getting new image using numpy slicing pt1, pt2 = ClassUtils.get_rectangle_bounds(person_arr, min_score) image_draw = image_draw[pt1[1]:pt2[1], pt1[0]:pt2[0]] # Selecting directory after processing image! init_dir = '/home/mauricio/Pictures/PosesNew' options = {'initialdir': init_dir} dir_name = filedialog.askdirectory(**options) if not dir_name: print('Directory not selected') else: new_name = ClassUtils.get_filename_no_extension(file) new_name = "{0}_{1}.{2}".format(new_name, selection_int, 'jpg') new_image_path = os.path.join(dir_name, new_name) new_json_path = os.path.join(dir_name, new_name.replace('.jpg', '.json')) cv2.imwrite(new_image_path, image_draw) with open(new_json_path, 'w') as file: file.write(arr_str) print('File copied from {0} to {1}'.format(full_path_draw, new_image_path)) index += 1 if index == len(list_files): index = len(list_files) - 1 cv2.destroyAllWindows() print('Done!')
def main(): print('Initializing main function') # Initializing instances instance_pose = ClassOpenPose() instance_net = ClassNN.load_from_params(model_dir) # Withdrawing list Tk().withdraw() # Select directory to process init_dir = '/home/mauricio/CNN/Images' options = {'initialdir': init_dir} dir_name = filedialog.askdirectory(**options) if not dir_name: print('Directory not selected') else: # Loading images list_files = os.listdir(dir_name) list_files.sort() desc_list = list() for file in list_files: full_path = os.path.join(dir_name, file) print('Processing image {0}'.format(full_path)) image = cv2.imread(full_path) arr = instance_pose.recognize_image(image) arr_pass = list() for person_arr in arr: if ClassUtils.check_vector_integrity_part( person_arr, min_pose_score): arr_pass.append(person_arr) if len(arr_pass) != 1: print('Invalid len {0} for image {1}'.format( len(arr_pass), full_path)) continue else: result_des = ClassDescriptors.get_person_descriptors( arr_pass[0], min_pose_score) descriptor_arr = result_des['fullDesc'] # Add descriptors to list desc_list.append(descriptor_arr) # Convert to numpy array print('Total poses: {0}'.format(len(desc_list))) # Transform list and predict desc_list_np = np.asarray(desc_list, dtype=np.float) print('ndim pose list: {0}'.format(desc_list_np.ndim)) list_classes = list() predict_results = instance_net.predict_model_array(desc_list_np) for result in predict_results: list_classes.append(result['classes']) print('Predict results: {0}'.format(list_classes)) print('Classes label: {0}'.format(instance_net.label_names)) print('Done!')
def main(): print('Initializing main function') Tk().withdraw() # filename1 = '/home/mauricio/Pictures/Poses/temp/636550787632290048_419.jpg' # filename2 = '/home/mauricio/Pictures/Poses/walk_front/636550801813440000_424.jpg' filename1 = '/home/mauricio/Pictures/Poses/bend_left/636453039344460032_1.jpg' filename2 = '/home/mauricio/Pictures/Poses/left_walk/636550795366450048_420.jpg' print('Select first file') init_dir = '/home/mauricio/Pictures/Poses' options = {'initialdir': init_dir} filename1_tmp = askopenfilename(**options) if filename1_tmp: filename1 = filename1_tmp print('File selected: {0}'.format(filename1)) print('Select second file') filename2_tmp = askopenfilename(**options) if filename2_tmp: filename2 = filename2_tmp print('File selected: {0}'.format(filename2)) img1 = cv2.imread(filename1) img2 = cv2.imread(filename2) instance_pose = ClassOpenPose() vectors1, img_draw1 = instance_pose.recognize_image_tuple(img1) vectors2, img_draw2 = instance_pose.recognize_image_tuple(img2) if len(vectors1) != 1: raise Exception('Invalid len for vector 1') if len(vectors2) != 1: raise Exception('Invalid len for vector 2') person_vector1 = vectors1[0] person_vector2 = vectors2[0] min_percent = 0.05 if not ClassUtils.check_vector_integrity_pos(person_vector1, min_percent): raise Exception('Invalid integrity for vector 1') if not ClassUtils.check_vector_integrity_pos(person_vector2, min_percent): raise Exception('Invalid integrity for vector 2') colors1 = ClassDescriptors.process_colors(vectors1, min_percent, img1, decode_img=False) colors2 = ClassDescriptors.process_colors(vectors2, min_percent, img2, decode_img=False) upper1 = colors1[0][0] lower1 = colors1[1][0] color_diff1 = ClassUtils.get_color_diff_rgb(upper1, lower1) upper2 = colors2[0][0] lower2 = colors2[1][0] color_diff2 = ClassUtils.get_color_diff_rgb(upper2, lower2) diff_upper = ClassUtils.get_color_diff_rgb(upper1, upper2) diff_lower = ClassUtils.get_color_diff_rgb(lower1, lower2) diff_diff = math.fabs(color_diff1 - color_diff2) print('Diff upper: {0}'.format(diff_upper)) print('Diff lower: {0}'.format(diff_lower)) print('Diff diffs: {0}'.format(diff_diff)) cv2.namedWindow('main_window', cv2.WND_PROP_AUTOSIZE) cv2.imshow('main_window', np.hstack((img_draw1, img_draw2))) cv2.waitKey(0) cv2.destroyAllWindows() print('Done!')
def main(): print('Initializing main function') # Prompt for user input cam_number_str = input('Insert camera number to process: ') cam_number = int(cam_number_str) # Open video from opencv cap = cv2.VideoCapture(cam_number) # Initializing open pose distance instance_pose = ClassOpenPose() # Initializing variables model_dir = '/home/mauricio/models/nn_classifier' instance_nn = ClassNN.load_from_params(model_dir) while True: # Capture frame-by-frame ret, frame = cap.read() # Processing frame with openpose arr, frame = instance_pose.recognize_image_tuple(frame) # Check if there is one frame with vector integrity arr_pass = list() min_score = 0.05 # Checking vector integrity for all elements # Verify there is at least one arm and one leg for elem in arr: if ClassUtils.check_vector_integrity_pos(elem, min_score): arr_pass.append(elem) if len(arr_pass) != 1: print('Invalid len for arr_pass: {0}'.format(arr_pass)) else: person_array = arr_pass[0] # Getting person descriptors results = ClassDescriptors.get_person_descriptors( person_array, min_score) # Descriptors data_to_add = results['angles'] data_to_add += ClassUtils.get_flat_list( results['transformedPoints']) data_np = np.asanyarray(data_to_add, dtype=np.float) # Getting result predict result_predict = instance_nn.predict_model(data_np) detected_class = result_predict['classes'] label_class = get_label_name(instance_nn.label_names, detected_class) print('Detected: {0} - Label: {1}'.format(detected_class, label_class)) # Draw text class into image - Evaluation purposes font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.6 font_color = (255, 255, 255) line_type = 2 cv2.putText(frame, '{0}'.format(label_class), (0, 0), font, font_scale, font_color, line_type) # Display the resulting frame cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows() print('Done!')