def train_prop(self, z): z = unpack(z) z = dropout(z, self.p, self.theano_rng) z.name = self.name return z * self.train_scale
init_W=init_W, init_b=init_b) # You will fill in a list of nodes nodes = [h1, output] # Initalize the nodes params = OrderedDict() for node in nodes: params.update(node.initialize()) params = init_tparams(params) nparams = add_noise_params(params, std_dev=std_dev) # Build the Theano computational graph d_x = inp_scale * dropout(x, p=inp_p) h1_out = h1.fprop([d_x], nparams) d1_out = int_scale * dropout(h1_out, p=int_p) y_hat = output.fprop([d1_out], nparams) # Compute the cost cost = NllMulInd(y, y_hat).mean() err = error(predict(y_hat), y) cost.name = 'cross_entropy' err.name = 'error_rate' # Seperate computational graph to compute monitoring values without # considering the noising processes m_h1_out = h1.fprop([x], params) m_y_hat = output.fprop([m_h1_out], params)
unit='softmax', init_W=init_W, init_b=init_b) # You will fill in a list of nodes nodes = [h1, output] # Initalize the nodes params = OrderedDict() for node in nodes: params.update(node.initialize()) params = init_tparams(params) nparams = add_noise_params(params, std_dev=std_dev) # Build the Theano computational graph d_x = inp_scale * dropout(x, p=inp_p) h1_out = h1.fprop([d_x], nparams) d1_out = int_scale * dropout(h1_out, p=int_p) y_hat = output.fprop([d1_out], nparams) # Compute the cost cost = NllMulInd(y, y_hat).mean() err = error(predict(y_hat), y) cost.name = 'cross_entropy' err.name = 'error_rate' # Seperate computational graph to compute monitoring values without # considering the noising processes m_h1_out = h1.fprop([x], params) m_y_hat = output.fprop([m_h1_out], params)