def plotAreaVsStraddling(straddling_dictionary, sizes, savefilename=''): X=np.zeros((len(sizes))) Y=np.zeros((len(sizes))) idx=0 for name, video in straddling_dictionary.iteritems(): dims=sizes[name] X[idx]=dims[0]*dims[1] measure= interpolateToFixedLength(video['origin']) Y[idx]=measure.mean() idx=idx+1 plt.scatter(X,Y) plt.title('Effect of the size ') plt.xlabel('Area, pixels') plt.ylabel('Average straddling measure') plt.xlim([0, 30000]) if savefilename=='': plt.show() else: plt.savefig(savefilename)
def plotAreaVsStraddling(straddling_dictionary, sizes, savefilename=''): X = np.zeros((len(sizes))) Y = np.zeros((len(sizes))) idx = 0 for name, video in straddling_dictionary.iteritems(): dims = sizes[name] X[idx] = dims[0] * dims[1] measure = interpolateToFixedLength(video['origin']) Y[idx] = measure.mean() idx = idx + 1 plt.scatter(X, Y) plt.title('Effect of the size ') plt.xlabel('Area, pixels') plt.ylabel('Average straddling measure') plt.xlim([0, 30000]) if savefilename == '': plt.show() else: plt.savefig(savefilename)
def plotAverages(dictionary, title='No Title', savefilename=''): #dictionary=dict() experiment_names = list() for value in dictionary.itervalues(): num_experiments = len(value) for key in value.iterkeys(): experiment_names.append(key) n = 100 X = np.zeros((num_experiments, n)) counts = np.zeros((num_experiments)) for video_dictionary in dictionary.itervalues(): for key, index in zip(video_dictionary.iterkeys(), range(0, num_experiments)): xs = interpolateToFixedLength(video_dictionary[key], n) if xs is not None: X[index, ] = X[index, ] + xs counts[index] = counts[index] + 1 y = np.linspace(0, 1, n) values = np.zeros((num_experiments)) for i in range(0, num_experiments): z = X[i, ] / counts[i] values[i] = simps(z, y) fig = plt.figure() sort_index = np.argsort(values) values = values[sort_index] labels = list() for i in range(0, len(sort_index)): labels.append(experiment_names[sort_index[i]]) values = values[::-1] labels = list(reversed(labels)) width = 0.3 ind = np.arange(len(values)) plt.bar(ind, values, align="center") plt.xticks(ind, labels) plt.title(title) #fig.autofmt_xdate() if savefilename != '': plt.savefig(savefilename) else: plt.show()
def plotAverages(dictionary,title='No Title',savefilename=''): #dictionary=dict() experiment_names=list() for value in dictionary.itervalues(): num_experiments=len(value) for key in value.iterkeys(): experiment_names.append(key) n = 100 X=np.zeros((num_experiments,n)) counts=np.zeros((num_experiments)) for video_dictionary in dictionary.itervalues(): for key,index in zip(video_dictionary.iterkeys(),range(0,num_experiments)): xs = interpolateToFixedLength(video_dictionary[key], n) if xs is not None: X[index,]= X[index,]+xs counts[index]= counts[index]+1 y = np.linspace(0, 1, n) values = np.zeros((num_experiments)) for i in range(0,num_experiments): z=X[i,]/counts[i] values[i]=simps(z,y) fig = plt.figure() sort_index = np.argsort(values) values=values[sort_index] labels=list() for i in range(0,len(sort_index)): labels.append(experiment_names[sort_index[i]]) values= values[::-1] labels=list(reversed(labels)) width = 0.3 ind = np.arange(len(values)) plt.bar(ind, values,align="center") plt.xticks(ind, labels) plt.title(title) #fig.autofmt_xdate() if savefilename!='': plt.savefig(savefilename) else: plt.show()