Exemple #1
0
def clip_eta(eta, ord, eps):
    """
    Helper function to clip the perturbation to epsilon norm ball.
    :param eta: A tensor with the current perturbation.
    :param ord: Order of the norm (mimics Numpy).
                Possible values: np.inf, 1 or 2.
    :param eps: Epilson, bound of the perturbation.
    """

    # Clipping perturbation eta to self.ord norm ball
    if ord not in [np.inf, 1, 2]:
        raise ValueError('ord must be np.inf, 1, or 2.')
    reduc_ind = list(xrange(1, len(eta.get_shape())))
    avoid_zero_div = 1e-12
    if ord == np.inf:
        eta = tf.clip_by_value(eta, -eps, eps)
    else:
        if ord == 1:
            norm = tf.maximum(avoid_zero_div,
                              reduce_sum(tf.abs(eta),
                                         reduc_ind, keepdims=True))
        elif ord == 2:
            # avoid_zero_div must go inside sqrt to avoid a divide by zero
            # in the gradient through this operation
            norm = tf.sqrt(tf.maximum(avoid_zero_div,
                                      reduce_sum(tf.square(eta),
                                                 reduc_ind,
                                                 keepdims=True)))
        # We must *clip* to within the norm ball, not *normalize* onto the
        # surface of the ball
        factor = tf.minimum(1., eps / norm)
        eta = eta * factor
    return eta
Exemple #2
0
def kl_with_logits(p_logits, q_logits, scope=None,
                   loss_collection=tf.GraphKeys.REGULARIZATION_LOSSES):
    """Helper function to compute kl-divergence KL(p || q)
    """
    with tf.name_scope(scope, "kl_divergence") as name:
        p = tf.nn.softmax(p_logits)
        p_log = tf.nn.log_softmax(p_logits)
        q_log = tf.nn.log_softmax(q_logits)
        loss = reduce_mean(reduce_sum(p * (p_log - q_log), axis=1),
                           name=name)
        tf.losses.add_loss(loss, loss_collection)
        return loss
Exemple #3
0
def l2_batch_normalize(x, epsilon=1e-12, scope=None):
    """
    Helper function to normalize a batch of vectors.
    :param x: the input placeholder
    :param epsilon: stabilizes division
    :return: the batch of l2 normalized vector
    """
    with tf.name_scope(scope, "l2_batch_normalize") as scope:
        x_shape = tf.shape(x)
        x = tf.contrib.layers.flatten(x)
        x /= (epsilon + reduce_max(tf.abs(x), 1, keepdims=True))
        square_sum = reduce_sum(tf.square(x), 1, keepdims=True)
        x_inv_norm = tf.rsqrt(np.sqrt(epsilon) + square_sum)
        x_norm = tf.multiply(x, x_inv_norm)
        return tf.reshape(x_norm, x_shape, scope)
Exemple #4
0
def spm(x,
        model,
        y=None,
        n_samples=None,
        dx_min=-0.1,
        dx_max=0.1,
        n_dxs=5,
        dy_min=-0.1,
        dy_max=0.1,
        n_dys=5,
        angle_min=-30,
        angle_max=30,
        n_angles=31,
        black_border_size=0):
    """
  TensorFlow implementation of the Spatial Transformation Method.
  :return: a tensor for the adversarial example
  """
    if y is None:
        preds = model.get_probs(x)
        # Using model predictions as ground truth to avoid label leaking
        preds_max = reduce_max(preds, 1, keepdims=True)
        y = tf.to_float(tf.equal(preds, preds_max))
        y = tf.stop_gradient(y)
        del preds
    y = y / reduce_sum(y, 1, keepdims=True)

    # Define the range of transformations
    dxs = np.linspace(dx_min, dx_max, n_dxs)
    dys = np.linspace(dy_min, dy_max, n_dys)
    angles = np.linspace(angle_min, angle_max, n_angles)

    if n_samples is None:
        import itertools
        transforms = list(itertools.product(*[dxs, dys, angles]))
    else:
        sampled_dxs = np.random.choice(dxs, n_samples)
        sampled_dys = np.random.choice(dys, n_samples)
        sampled_angles = np.random.choice(angles, n_samples)
        transforms = zip(sampled_dxs, sampled_dys, sampled_angles)
    transformed_ims = parallel_apply_transformations(x, transforms,
                                                     black_border_size)

    def _compute_xent(x):
        preds = model.get_logits(x)
        return tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,
                                                          logits=preds)

    all_xents = tf.map_fn(
        _compute_xent, transformed_ims,
        parallel_iterations=1)  # Must be 1 to avoid keras race conditions

    # Return the adv_x with worst accuracy

    # all_xents is n_total_samples x batch_size (SB)
    all_xents = tf.stack(all_xents)  # SB

    # We want the worst case sample, with the largest xent_loss
    worst_sample_idx = tf.argmax(all_xents, axis=0)  # B

    batch_size = tf.shape(x)[0]
    keys = tf.stack([
        tf.range(batch_size, dtype=tf.int32),
        tf.cast(worst_sample_idx, tf.int32)
    ],
                    axis=1)
    transformed_ims_bshwc = tf.einsum('sbhwc->bshwc', transformed_ims)
    after_lookup = tf.gather_nd(transformed_ims_bshwc, keys)  # BHWC
    return after_lookup
Exemple #5
0
  def generate(self, x, **kwargs):
    assert self.parse_params(**kwargs)

    asserts = []

    if self.clip_min is not None:
      asserts.append(utils_tf.assert_greater_equal(
        x, tf.cast(self.clip_min,x.dtype)))

    if self.clip_max is not None:
      asserts.append(utils_tf.assert_less_equal(
        x, tf.cast(self.clip_max, x.dtype)))

    m_cache = tf.zeros_like(x)
    v_cache = tf.zeros_like(x)
    adv_x = x

    y, _nb_classes = self.get_or_guess_labels(x, kwargs)
    y = y / reduce_sum(y, 1, keepdims=True)
    targeted = (self.y_target is not None)

    def save_batch(directory, images, labels, iteration, batch_idx):
      for idx, (image, label) in enumerate(zip(images, labels)):
        filename = "id{}_b{}_it{}_l{}.png".format(idx, batch_idx,
                                                  iteration, np.argmax(label))
        save_image_np(join(directory, filename), image)

    for i in range(self.nb_iter):
      self.logger.debug("Starting #{} iteration".format(i + 1))

      logits = self.model.get_logits(adv_x)
      loss = softmax_cross_entropy_with_logits(labels=y, logits=logits)
      if targeted:
        loss = -loss

      grad, = tf.gradients(loss, adv_x)

      red_ind = list(range(1, len(grad.get_shape())))
      avoid_zero_div = tf.cast(1e-8, grad.dtype)
      grad = grad / tf.maximum(
        avoid_zero_div,
        reduce_mean(tf.abs(grad), red_ind, keepdims=True))

      m_cache = self.betha1 * m_cache + (1 - self.betha1) * grad
      v_cache = self.betha2 * v_cache + (1 - self.betha2) * tf.square(grad)
      update = tf.divide(m_cache, tf.sqrt(v_cache + avoid_zero_div))

      optimal_perturbation = optimize_linear(update, self.eps_iter, self.ord)
      if self.ord == 1:
        raise NotImplementedError("This attack hasn't been tested for ord=1."
                                  "It's not clear that FGM makes a good inner "
                                  "loop step for iterative optimization since "
                                  "it updates just one coordinate at a time.")

      adv_x = adv_x + optimal_perturbation
      adv_x = x + utils_tf.clip_eta(adv_x - x, self.ord, self.eps)

      if self.clip_min is not None and self.clip_max is not None:
        adv_x = utils_tf.clip_by_value(adv_x, self.clip_min, self.clip_max)

      adv_x = tf.stop_gradient(adv_x)

      if self.sanity_checks:
        with tf.control_dependencies(asserts):
          adv_x = tf.identity(adv_x)

      with self.sess.as_default():
        self.sess.run(self.init_op)
        for batch in range(self.nb_batches):
          adv_x_np, y_np = self.sess.run([adv_x, y])
          self.logger.debug("Saving attacked batch #{}".format(batch + 1))
          save_batch(self.adv_dir, adv_x_np, y_np, i, batch)
Exemple #6
0
    def fgm(self, x, labels, targeted=False):
        """
        TensorFlow Eager implementation of the Fast Gradient Method.
        :param x: the input variable
        :param targeted: Is the attack targeted or untargeted? Untargeted, the
                         default, will try to make the label incorrect.
                         Targeted will instead try to move in the direction
                         of being more like y.
        :return: a tensor for the adversarial example
        """
        # Compute loss
        with tf.GradientTape() as tape:
            # input should be watched because it may be
            # combination of trainable and non-trainable variables
            tape.watch(x)
            loss_obj = LossCrossEntropy(self.model, smoothing=0.)
            loss = loss_obj.fprop(x=x, y=labels)
            if targeted:
                loss = -loss

        # Define gradient of loss wrt input
        grad = tape.gradient(loss, x)
        if self.ord == np.inf:
            # Take sign of gradient
            normalized_grad = tf.sign(grad)
            # The following line should not change the numerical results.
            # It applies only because `normalized_grad` is the output of
            # a `sign` op, which has zero derivative anyway.
            # It should not be applied for the other norms, where the
            # perturbation has a non-zero derivative.
            normalized_grad = tf.stop_gradient(normalized_grad)
        elif self.ord == 1:
            red_ind = list(xrange(1, len(x.get_shape())))
            avoid_zero_div = 1e-12
            avoid_nan_norm = tf.maximum(
                avoid_zero_div,
                reduce_sum(tf.abs(grad),
                           reduction_indices=red_ind,
                           keepdims=True))
            normalized_grad = grad / avoid_nan_norm
        elif self.ord == 2:
            red_ind = list(xrange(1, len(x.get_shape())))
            avoid_zero_div = 1e-12
            square = tf.maximum(
                avoid_zero_div,
                reduce_sum(tf.square(grad),
                           reduction_indices=red_ind,
                           keepdims=True))
            normalized_grad = grad / tf.sqrt(square)
        else:
            raise NotImplementedError("Only L-inf, L1 and L2 norms are "
                                      "currently implemented.")

        # Multiply by constant epsilon
        scaled_grad = self.eps * normalized_grad

        # Add perturbation to original example to obtain adversarial example
        adv_x = x + scaled_grad

        # If clipping is needed
        # reset all values outside of [clip_min, clip_max]
        if (self.clip_min is not None) and (self.clip_max is not None):
            adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max)
        return adv_x
    def __init__(self, sess, model, beta, decision_rule, batch_size,
                 confidence, targeted, learning_rate, binary_search_steps,
                 max_iterations, abort_early, initial_const, clip_min,
                 clip_max, num_labels, shape):
        """
    EAD Attack

    Return a tensor that constructs adversarial examples for the given
    input. Generate uses tf.py_func in order to operate over tensors.

    :param sess: a TF session.
    :param model: a cleverhans.model.Model object.
    :param beta: Trades off L2 distortion with L1 distortion: higher
                 produces examples with lower L1 distortion, at the
                 cost of higher L2 (and typically Linf) distortion
    :param decision_rule: EN or L1. Select final adversarial example from
                          all successful examples based on the least
                          elastic-net or L1 distortion criterion.
    :param batch_size: Number of attacks to run simultaneously.
    :param confidence: Confidence of adversarial examples: higher produces
                       examples with larger l2 distortion, but more
                       strongly classified as adversarial.
    :param targeted: boolean controlling the behavior of the adversarial
                     examples produced. If set to False, they will be
                     misclassified in any wrong class. If set to True,
                     they will be misclassified in a chosen target class.
    :param learning_rate: The learning rate for the attack algorithm.
                          Smaller values produce better results but are
                          slower to converge.
    :param binary_search_steps: The number of times we perform binary
                                search to find the optimal tradeoff-
                                constant between norm of the perturbation
                                and confidence of the classification. Set
                                'initial_const' to a large value and fix
                                this param to 1 for speed.
    :param max_iterations: The maximum number of iterations. Setting this
                           to a larger value will produce lower distortion
                           results. Using only a few iterations requires
                           a larger learning rate, and will produce larger
                           distortion results.
    :param abort_early: If true, allows early abort when the total
                        loss starts to increase (greatly speeds up attack,
                        but hurts performance, particularly on ImageNet)
    :param initial_const: The initial tradeoff-constant to use to tune the
                          relative importance of size of the perturbation
                          and confidence of classification.
                          If binary_search_steps is large, the initial
                          constant is not important. A smaller value of
                          this constant gives lower distortion results.
                          For computational efficiency, fix
                          binary_search_steps to 1 and set this param
                          to a large value.
    :param clip_min: (optional float) Minimum input component value.
    :param clip_max: (optional float) Maximum input component value.
    :param num_labels: the number of classes in the model's output.
    :param shape: the shape of the model's input tensor.
    """

        self.sess = sess
        self.TARGETED = targeted
        self.LEARNING_RATE = learning_rate
        self.MAX_ITERATIONS = max_iterations
        self.BINARY_SEARCH_STEPS = binary_search_steps
        self.ABORT_EARLY = abort_early
        self.CONFIDENCE = confidence
        self.initial_const = initial_const
        self.batch_size = batch_size
        self.clip_min = clip_min
        self.clip_max = clip_max
        self.model = model
        self.decision_rule = decision_rule

        self.beta = beta
        self.beta_t = tf.cast(self.beta, tf_dtype)

        self.repeat = binary_search_steps >= 10

        self.shape = shape = tuple([batch_size] + list(shape))

        # these are variables to be more efficient in sending data to tf
        self.timg = tf.Variable(np.zeros(shape), dtype=tf_dtype, name='timg')
        self.newimg = tf.Variable(np.zeros(shape),
                                  dtype=tf_dtype,
                                  name='newimg')
        self.slack = tf.Variable(np.zeros(shape), dtype=tf_dtype, name='slack')
        self.tlab = tf.Variable(np.zeros((batch_size, num_labels)),
                                dtype=tf_dtype,
                                name='tlab')
        self.const = tf.Variable(np.zeros(batch_size),
                                 dtype=tf_dtype,
                                 name='const')

        # and here's what we use to assign them
        self.assign_timg = tf.compat.v1.placeholder(tf_dtype,
                                                    shape,
                                                    name='assign_timg')
        self.assign_newimg = tf.compat.v1.placeholder(tf_dtype,
                                                      shape,
                                                      name='assign_newimg')
        self.assign_slack = tf.compat.v1.placeholder(tf_dtype,
                                                     shape,
                                                     name='assign_slack')
        self.assign_tlab = tf.compat.v1.placeholder(tf_dtype,
                                                    (batch_size, num_labels),
                                                    name='assign_tlab')
        self.assign_const = tf.compat.v1.placeholder(tf_dtype, [batch_size],
                                                     name='assign_const')

        self.global_step = tf.Variable(0, trainable=False)
        self.global_step_t = tf.cast(self.global_step, tf_dtype)

        # Fast Iterative Shrinkage Thresholding
        self.zt = tf.divide(self.global_step_t,
                            self.global_step_t + tf.cast(3, tf_dtype))
        cond1 = tf.cast(
            tf.greater(tf.subtract(self.slack, self.timg), self.beta_t),
            tf_dtype)
        cond2 = tf.cast(
            tf.less_equal(tf.abs(tf.subtract(self.slack, self.timg)),
                          self.beta_t), tf_dtype)
        cond3 = tf.cast(
            tf.less(tf.subtract(self.slack, self.timg),
                    tf.negative(self.beta_t)), tf_dtype)

        upper = tf.minimum(tf.subtract(self.slack, self.beta_t),
                           tf.cast(self.clip_max, tf_dtype))
        lower = tf.maximum(tf.add(self.slack, self.beta_t),
                           tf.cast(self.clip_min, tf_dtype))

        self.assign_newimg = tf.multiply(cond1, upper)
        self.assign_newimg += tf.multiply(cond2, self.timg)
        self.assign_newimg += tf.multiply(cond3, lower)

        self.assign_slack = self.assign_newimg
        self.assign_slack += tf.multiply(self.zt,
                                         self.assign_newimg - self.newimg)

        # --------------------------------
        self.setter = tf.compat.v1.assign(self.newimg, self.assign_newimg)
        self.setter_y = tf.compat.v1.assign(self.slack, self.assign_slack)

        # prediction BEFORE-SOFTMAX of the model
        self.output = model.get_logits(self.newimg)
        self.output_y = model.get_logits(self.slack)

        # distance to the input data
        self.l2dist = reduce_sum(tf.square(self.newimg - self.timg),
                                 list(range(1, len(shape))))
        self.l2dist_y = reduce_sum(tf.square(self.slack - self.timg),
                                   list(range(1, len(shape))))
        self.l1dist = reduce_sum(tf.abs(self.newimg - self.timg),
                                 list(range(1, len(shape))))
        self.l1dist_y = reduce_sum(tf.abs(self.slack - self.timg),
                                   list(range(1, len(shape))))
        self.elasticdist = self.l2dist + tf.multiply(self.l1dist, self.beta_t)
        self.elasticdist_y = self.l2dist_y + tf.multiply(
            self.l1dist_y, self.beta_t)
        if self.decision_rule == 'EN':
            self.crit = self.elasticdist
            self.crit_p = 'Elastic'
        else:
            self.crit = self.l1dist
            self.crit_p = 'L1'

        # compute the probability of the label class versus the maximum other
        real = reduce_sum((self.tlab) * self.output, 1)
        real_y = reduce_sum((self.tlab) * self.output_y, 1)
        other = reduce_max((1 - self.tlab) * self.output - (self.tlab * 10000),
                           1)
        other_y = reduce_max(
            (1 - self.tlab) * self.output_y - (self.tlab * 10000), 1)

        if self.TARGETED:
            # if targeted, optimize for making the other class most likely
            loss1 = tf.maximum(ZERO(), other - real + self.CONFIDENCE)
            loss1_y = tf.maximum(ZERO(), other_y - real_y + self.CONFIDENCE)
        else:
            # if untargeted, optimize for making this class least likely.
            loss1 = tf.maximum(ZERO(), real - other + self.CONFIDENCE)
            loss1_y = tf.maximum(ZERO(), real_y - other_y + self.CONFIDENCE)

        # sum up the losses
        self.loss21 = reduce_sum(self.l1dist)
        self.loss21_y = reduce_sum(self.l1dist_y)
        self.loss2 = reduce_sum(self.l2dist)
        self.loss2_y = reduce_sum(self.l2dist_y)
        self.loss1 = reduce_sum(self.const * loss1)
        self.loss1_y = reduce_sum(self.const * loss1_y)
        self.loss_opt = self.loss1_y + self.loss2_y
        self.loss = self.loss1 + self.loss2 + tf.multiply(
            self.beta_t, self.loss21)

        self.learning_rate = tf.compat.v1.train.polynomial_decay(
            self.LEARNING_RATE,
            self.global_step,
            self.MAX_ITERATIONS,
            0,
            power=0.5)

        # Setup the optimizer and keep track of variables we're creating
        start_vars = set(x.name for x in tf.compat.v1.global_variables())
        optimizer = tf.compat.v1.train.GradientDescentOptimizer(
            self.learning_rate)
        self.train = optimizer.minimize(self.loss_opt,
                                        var_list=[self.slack],
                                        global_step=self.global_step)
        end_vars = tf.compat.v1.global_variables()
        new_vars = [x for x in end_vars if x.name not in start_vars]

        # these are the variables to initialize when we run
        self.setup = []
        self.setup.append(self.timg.assign(self.assign_timg))
        self.setup.append(self.tlab.assign(self.assign_tlab))
        self.setup.append(self.const.assign(self.assign_const))

        var_list = [self.global_step] + [self.slack] + [self.newimg] + new_vars
        self.init = tf.compat.v1.variables_initializer(var_list=var_list)
  def body(x_in, y_in, domain_in, i_in, cond_in):
    # Create graph for model logits and predictions
    logits = model.get_logits(x_in)
    preds = tf.nn.softmax(logits)
    preds_onehot = tf.one_hot(tf.argmax(preds, axis=1), depth=nb_classes)

    # create the Jacobian graph
    list_derivatives = []
    for class_ind in xrange(nb_classes):
      derivatives = tf.gradients(logits[:, class_ind], x_in)
      list_derivatives.append(derivatives[0])
    grads = tf.reshape(
        tf.stack(list_derivatives), shape=[nb_classes, -1, nb_features])

    # Compute the Jacobian components
    # To help with the computation later, reshape the target_class
    # and other_class to [nb_classes, -1, 1].
    # The last dimention is added to allow broadcasting later.
    target_class = tf.reshape(
        tf.transpose(y_in, perm=[1, 0]), shape=[nb_classes, -1, 1])
    other_classes = tf.cast(tf.not_equal(target_class, 1), tf_dtype)

    grads_target = reduce_sum(grads * target_class, axis=0)
    grads_mine = (grads*other_classes)
    grads_other = reduce_sum(grads * other_classes, axis=0)
    # target class is ignored because other_classes is 0 where   
    # the target class is. and target class must be greater than
    # zero. 
    max_others = reduce_max(grads_mine, 0, True) 

    # print(grads_mine.shape)
    # print(max_others.shape)
    
    # Remove the already-used input features from the search space
    # Subtract 2 times the maximum value from those value so that
    # they won't be picked later
    increase_coef = (4 * int(increase) - 2) \
        * tf.cast(tf.equal(domain_in, 0), tf_dtype)

    target_tmp = grads_target
    target_tmp -= increase_coef \
        * reduce_max(tf.abs(grads_target), axis=1, keepdims=True)
    target_sum = tf.reshape(target_tmp, shape=[-1, nb_features, 1]) \
        + tf.reshape(target_tmp, shape=[-1, 1, nb_features])

    other_tmp = grads_other
    other_tmp += increase_coef \
        * reduce_max(tf.abs(grads_other), axis=1, keepdims=True)
    other_sum = tf.reshape(other_tmp, shape=[-1, nb_features, 1]) \
        + tf.reshape(other_tmp, shape=[-1, 1, nb_features])

    # Create a mask to only keep features that match conditions
    if increase:     
       #scores_mask = ((target_sum > 0) & (other_sum < 0 ) ) 
       scores_mask = ((target_sum > 0) & (other_sum < 0 ) & (target_sum > max_others))
    else:
      scores_mask = ((target_sum < 0) & (other_sum > 0) )
    global it_count
    it_count = it_count +1
    #Create a 2D numpy array of scores for each pair of candidate features
    scores = tf.cast(scores_mask, tf_dtype) \
        * (-target_sum * other_sum) * zero_diagonal
    # scores = tf.exp(target_sum, name = 'exp')
    # Extract the best two pixels
    best = tf.argmax(
        tf.reshape(scores, shape=[-1, nb_features * nb_features]), axis=1)

    p1 = tf.mod(best, nb_features)
    p2 = tf.floordiv(best, nb_features)
    p1_one_hot = tf.one_hot(p1, depth=nb_features)
    p2_one_hot = tf.one_hot(p2, depth=nb_features)

    # Check if more modification is needed for each sample
    mod_not_done = tf.equal(reduce_sum(y_in * preds_onehot, axis=1), 0)
    cond = mod_not_done & (reduce_sum(domain_in, axis=1) >= 2)

    # Update the search domain
    cond_float = tf.reshape(tf.cast(cond, tf_dtype), shape=[-1, 1])
    to_mod = (p1_one_hot + p2_one_hot) * cond_float

    domain_out = domain_in - to_mod

    # Apply the modification to the images
    to_mod_reshape = tf.reshape(
        to_mod, shape=([-1] + x_in.shape[1:].as_list()))
    if increase:
      x_out = tf.minimum(clip_max, x_in + to_mod_reshape * theta)
    else:
      x_out = tf.maximum(clip_min, x_in - to_mod_reshape * theta)

    # Increase the iterator, and check if all misclassifications are done
    i_out = tf.add(i_in, 1)
    cond_out = reduce_any(cond)

    return x_out, y_in, domain_out, i_out, cond_out
  def generate(self, x, **kwargs):
    """
    Generate symbolic graph for adversarial examples and return.
    :param x: The model's symbolic inputs.
    :param kwargs: Keyword arguments. See `parse_params` for documentation.
    """
    # Parse and save attack-specific parameters
    assert self.parse_params(**kwargs)

    asserts = []

    # If a data range was specified, check that the input was in that range
    if self.clip_min is not None:
      asserts.append(utils_tf.assert_greater_equal(x,
                                                   tf.cast(self.clip_min,
                                                           x.dtype)))

    if self.clip_max is not None:
      asserts.append(utils_tf.assert_less_equal(x,
                                                tf.cast(self.clip_max,
                                                        x.dtype)))

    # Initialize loop variables
    momentum = tf.zeros_like(x)
    adv_x = x

    # Fix labels to the first model predictions for loss computation
    y, _nb_classes = self.get_or_guess_labels(x, kwargs)
    y = y / reduce_sum(y, 1, keepdims=True)
    targeted = (self.y_target is not None)

    def cond(i, _, __):
      """Iterate until number of iterations completed"""
      return tf.less(i, self.nb_iter)

    def body(i, ax, m):
      """Do a momentum step"""
      logits = self.model.get_logits(ax)
      loss = softmax_cross_entropy_with_logits(labels=y, logits=logits)
      if targeted:
        loss = -loss
    
      # Define gradient of loss wrt input
      grad, = tf.gradients(loss, ax)  
 
      grad = tf.nn.depthwise_conv2d(grad, self.kernel, strides=[1, 1, 1, 1], padding='SAME')

      # Normalize current gradient and add it to the accumulated gradient
      red_ind = list(range(1, len(grad.get_shape())))
      avoid_zero_div = tf.cast(1e-12, grad.dtype)
      grad = grad / tf.maximum(
          avoid_zero_div,
          reduce_mean(tf.abs(grad), red_ind, keepdims=True))
      m = self.decay_factor * m + grad

      optimal_perturbation = optimize_linear(m, self.eps_iter, self.ord)
      if self.ord == 1:
        raise NotImplementedError("This attack hasn't been tested for ord=1."
                                  "It's not clear that FGM makes a good inner "
                                  "loop step for iterative optimization since "
                                  "it updates just one coordinate at a time.")

      # Update and clip adversarial example in current iteration
      ax = ax + optimal_perturbation
      ax = x + utils_tf.clip_eta(ax - x, self.ord, self.eps)

      if self.clip_min is not None and self.clip_max is not None:
        ax = utils_tf.clip_by_value(ax, self.clip_min, self.clip_max)

      ax = tf.stop_gradient(ax)

      return i + 1, ax, m

    _, adv_x, _ = tf.while_loop(
        cond, body, (tf.zeros([]), adv_x, momentum), back_prop=True,
        maximum_iterations=self.nb_iter)

    if self.sanity_checks:
      with tf.control_dependencies(asserts):
        adv_x = tf.identity(adv_x)

    return adv_x
    def __init__(self, sess, model, reconstructor, batch_size, confidence,
                 targeted, learning_rate, binary_search_steps, max_iterations,
                 abort_early, initial_const, clip_min, clip_max, num_labels,
                 shape):

        self.sess = sess
        self.TARGETED = targeted
        self.LEARNING_RATE = learning_rate
        self.MAX_ITERATIONS = max_iterations
        self.BINARY_SEARCH_STEPS = binary_search_steps
        self.ABORT_EARLY = abort_early
        self.CONFIDENCE = confidence
        self.initial_const = initial_const
        self.batch_size = batch_size
        self.clip_min = clip_min
        self.clip_max = clip_max
        self.model = model
        self.reconstructor = reconstructor

        self.repeat = binary_search_steps >= 10

        self.shape = shape = tuple([batch_size] + list(shape))

        # the variable we're going to optimize over
        modifier = tf.Variable(np.zeros(shape, dtype=np_dtype))

        # these are variables to be more efficient in sending data to tf
        self.timg = tf.Variable(np.zeros(shape), dtype=tf_dtype, name='timg')
        self.tlab = tf.Variable(np.zeros((batch_size, num_labels)),
                                dtype=tf_dtype,
                                name='tlab')
        self.const = tf.Variable(np.zeros(batch_size),
                                 dtype=tf_dtype,
                                 name='const')

        # and here's what we use to assign them
        self.assign_timg = tf.placeholder(tf_dtype, shape, name='assign_timg')
        self.assign_tlab = tf.placeholder(tf_dtype, (batch_size, num_labels),
                                          name='assign_tlab')
        self.assign_const = tf.placeholder(tf_dtype, [batch_size],
                                           name='assign_const')

        # the resulting instance, tanh'd to keep bounded from clip_min
        # to clip_max
        self.newimg = (tf.tanh(modifier + self.timg) + 1) / 2
        self.newimg = self.newimg * (clip_max - clip_min) + clip_min

        recon_img = tf.stop_gradient(
            self.reconstructor.reconstruct(self.newimg,
                                           batch_size=batch_size)[0])
        recon_img = (tf.tanh(recon_img) + 1) / 2 * (clip_max -
                                                    clip_min) + clip_min

        # prediction BEFORE-SOFTMAX of the model
        self.output = model.get_logits(recon_img)

        # distance to the input data
        self.other = (tf.tanh(self.timg) + 1) / \
            2 * (clip_max - clip_min) + clip_min
        #self.l2dist = reduce_sum(
        #    tf.square(self.newimg - self.other), list(range(1, len(shape))))
        self.l2dist = reduce_sum(tf.square(recon_img - self.other),
                                 list(range(1, len(shape))))

        # compute the probability of the label class versus the maximum other
        real = reduce_sum((self.tlab) * self.output, 1)
        other = reduce_max((1 - self.tlab) * self.output - self.tlab * 10000,
                           1)

        if self.TARGETED:
            # if targeted, optimize for making the other class most likely
            loss1 = tf.maximum(ZERO(), other - real + self.CONFIDENCE)
        else:
            # if untargeted, optimize for making this class least likely.
            loss1 = tf.maximum(ZERO(), real - other + self.CONFIDENCE)

        # sum up the losses
        self.loss2 = reduce_sum(self.l2dist)
        self.loss1 = reduce_sum(self.const * loss1)
        self.loss = self.loss1 + self.loss2

        # Setup the adam optimizer and keep track of variables we're creating
        start_vars = set(x.name for x in tf.global_variables())
        optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE)
        grads_and_vars = optimizer.compute_gradients(self.loss, [recon_img])
        grads_and_vars = [(grads_and_vars[0][0], modifier)]
        self.train = optimizer.apply_gradients(grads_and_vars)
        #self.train = optimizer.minimize(self.loss, var_list=[modifier])
        end_vars = tf.global_variables()
        new_vars = [x for x in end_vars if x.name not in start_vars]

        # these are the variables to initialize when we run
        self.setup = []
        self.setup.append(self.timg.assign(self.assign_timg))
        self.setup.append(self.tlab.assign(self.assign_tlab))
        self.setup.append(self.const.assign(self.assign_const))

        self.init = tf.variables_initializer(var_list=[modifier] + new_vars)
    def __init__(self, sess, model, cl_model, batch_size, confidence, targeted,
                 learning_rate, binary_search_steps, max_iterations,
                 abort_early, initial_const, clip_min, clip_max, num_labels,
                 shape):

        self.sess = sess
        self.TARGETED = targeted
        self.LEARNING_RATE = learning_rate
        self.MAX_ITERATIONS = max_iterations
        self.BINARY_SEARCH_STEPS = binary_search_steps
        self.ABORT_EARLY = abort_early
        self.CONFIDENCE = confidence
        self.initial_const = initial_const
        self.batch_size = batch_size
        self.clip_min = clip_min
        self.clip_max = clip_max
        self.model = model
        self.cl_model = cl_model

        latent_layer_model = Model(inputs=model.input,
                                   outputs=model.get_layer("latent").output)

        self.repeat = binary_search_steps >= 10

        self.shape = shape = tuple([batch_size] + list(shape))
        #print("shape: ", shape)

        # the variable we're going to optimize over
        modifier = tf.Variable(np.zeros(shape, dtype=np_dtype))

        # these are variables to be more efficient in sending data to tf
        self.timg = tf.Variable(np.zeros(shape), dtype=tf_dtype, name='timg')
        self.targimg = tf.Variable(np.zeros(shape),
                                   dtype=tf_dtype,
                                   name='targimg')
        #self.tlab = tf.Variable(
        #   np.zeros((batch_size, num_labels)), dtype=tf_dtype, name='tlab')
        self.const = tf.Variable(np.zeros(batch_size),
                                 dtype=tf_dtype,
                                 name='const')

        # and here's what we use to assign them
        self.assign_timg = tf.placeholder(tf_dtype, shape, name='assign_timg')
        self.assign_targimg = tf.placeholder(tf_dtype,
                                             shape,
                                             name='assign_targimg')
        #self.assign_tlab = tf.placeholder(
        #   tf_dtype, (batch_size, num_labels), name='assign_tlab')
        self.assign_const = tf.placeholder(tf_dtype, [batch_size],
                                           name='assign_const')

        # the resulting instance, tanh'd to keep bounded from clip_min
        # to clip_max
        self.newimg = (tf.tanh(modifier + self.timg) + 1) / 2
        self.newimg = self.newimg * (clip_max - clip_min) + clip_min

        targimg_lat = latent_layer_model.predict(self.targimg)

        self.x_hat = model.predict(self.newimg, steps=1)
        self.x_hat_lat = latent_layer_model.predict(self.newimg)

        self.y_hat_logit = cl_model.prediction(self.x_hat_lat, steps=1)
        self.y_hat = tf.argmax(self.y_hat_logit, axis=1)

        self.y_targ_logit = cl_model.predict(targimg_lat, steps=1)
        self.y_targ = tf.argmax(self.y_targ_logit, axis=1)

        # distance to the input data
        self.other = (tf.tanh(self.timg) + 1) / 2
        self.other = self.other * (clip_max - clip_min) + clip_min
        self.l2dist = reduce_sum(tf.square(self.newimg - self.other),
                                 list(range(1, len(shape))))

        print("shape of l2_dist: ", np.shape(self.l2dist))

        epsilon = 10e-8

        loss1 = reduce_sum(tf.square(self.x_hat_lat - targimg_lat))

        # sum up the losses
        self.loss2 = reduce_sum(self.l2dist)
        self.loss1 = reduce_sum(self.const * loss1)
        self.loss = self.loss1 + self.loss2

        # Setup the adam optimizer and keep track of variables we're creating
        start_vars = set(x.name for x in tf.global_variables())
        optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE)
        self.train = optimizer.minimize(self.loss, var_list=[modifier])
        end_vars = tf.global_variables()
        new_vars = [x for x in end_vars if x.name not in start_vars]

        # these are the variables to initialize when we run
        self.setup = []
        self.setup.append(self.timg.assign(self.assign_timg))
        self.setup.append(self.targimg.assign(self.assign_targimg))
        #self.setup.append(self.tlab.assign(self.assign_tlab))
        self.setup.append(self.const.assign(self.assign_const))

        self.init = tf.variables_initializer(var_list=[modifier] + new_vars)
Exemple #12
0
    def __init__(self, sess, model, ensemble, batch_size, confidence, targeted,
                 learning_rate, binary_search_steps, max_iterations,
                 abort_early, initial_const, clip_min, clip_max, num_labels,
                 shape):
        """
        """

        self.sess = sess
        self.TARGETED = targeted
        self.LEARNING_RATE = learning_rate
        self.MAX_ITERATIONS = max_iterations
        self.BINARY_SEARCH_STEPS = binary_search_steps
        self.ABORT_EARLY = abort_early
        self.CONFIDENCE = confidence
        self.initial_const = initial_const
        self.batch_size = batch_size
        self.clip_min = clip_min
        self.clip_max = clip_max
        self.model = model
        self.ensemble = ensemble

        self.repeat = binary_search_steps >= 10

        self.shape = shape = tuple([batch_size] + list(shape))

        # the variable we're going to optimize over
        modifier = tf.Variable(np.zeros(shape, dtype=np_dtype))

        # these are variables to be more efficient in sending data to tf
        self.timg = tf.Variable(np.zeros(shape), dtype=tf_dtype, name='timg')
        self.tlab = tf.Variable(np.zeros((batch_size, num_labels)),
                                dtype=tf_dtype,
                                name='tlab')
        self.const = tf.Variable(np.zeros(batch_size),
                                 dtype=tf_dtype,
                                 name='const')

        # and here's what we use to assign them
        self.assign_timg = tf.placeholder(tf_dtype, shape, name='assign_timg')
        self.assign_tlab = tf.placeholder(tf_dtype, (batch_size, num_labels),
                                          name='assign_tlab')
        self.assign_const = tf.placeholder(tf_dtype, [batch_size],
                                           name='assign_const')

        # the resulting instance, tanh'd to keep bounded from clip_min
        # to clip_max
        self.newimg = (tf.tanh(modifier + self.timg) + 1) / 2
        self.newimg = self.newimg * (clip_max - clip_min) + clip_min

        # prediction BEFORE-SOFTMAX of the model
        self.output = model.get_logits(self.newimg)

        # distance to the input data
        self.other = (tf.tanh(self.timg) + 1) / \
            2 * (clip_max - clip_min) + clip_min
        self.l2dist = reduce_sum(tf.square(self.newimg - self.other),
                                 list(range(1, len(shape))))

        # compute the probability of the label class versus the maximum other
        real = reduce_sum((self.tlab) * self.output, 1)
        other = reduce_max((1 - self.tlab) * self.output - self.tlab * 10000,
                           1)

        if self.TARGETED:
            # if targeted, optimize for making the other class most likely
            loss1 = tf.maximum(ZERO(), other - real + self.CONFIDENCE)
        else:
            # if untargeted, optimize for making this class least likely.
            loss1 = tf.maximum(ZERO(), real - other + self.CONFIDENCE)

        # sum up the losses
        self.loss2 = reduce_sum(self.l2dist)

        # ==================== Add ensemble part ==================== #
        # Get the number of small nets for each class
        self.n_nets = np.array([len(x) for x in self.ensemble])
        # Max number of small nets in one class
        n_nets_max = np.max(self.n_nets)

        # Gather all outputs from the ensemble
        all_nets = []
        for i in range(num_labels):
            class_nets = []
            for j in range(n_nets_max):
                if j < self.n_nets[i]:
                    class_nets.append(self.ensemble[i][j].get_logits(
                        self.newimg))
                else:
                    # Padding: append [0, 0] for classes that have the number
                    # of NNs less than n_nets_max
                    class_nets.append(tf.zeros([batch_size, 2]))
            all_nets.append(tf.stack(class_nets, axis=1))
        self.ensemble_out = tf.stack(all_nets, axis=1)

        # Based on output, see which set of the ensemble to use
        # Find label/class to look for in ensemble
        if self.TARGETED:
            label = tf.argmax(self.tlab, axis=1)
        else:
            # Output of original image
            self.orig_output = model.get_logits(self.other)
            label = tf.argmax(self.orig_output, axis=1)
        ind = tf.range(batch_size, dtype=tf.int64)
        ind_label = tf.stack([ind, label], axis=1)
        # Use gather_nd to do numpy slicing
        self.label_nets = tf.gather_nd(self.ensemble_out, ind_label)

        # DEBUG
        # print("self.ensemble_out: ", self.ensemble_out)
        # print("label: ", label)
        # print("ind_label: ", ind_label)
        # print("label_nets: ", self.label_nets)

        # Get the loss function for the small net part
        if self.TARGETED:
            diff = self.label_nets[:, :, 0] - self.label_nets[:, :, 1]
        else:
            diff = self.label_nets[:, :, 1] - self.label_nets[:, :, 0]
        # Find the largest difference among small nets
        max_diff = tf.reduce_max(diff, axis=1)
        # Add confidence margin and clip at zero
        ensemble_loss = tf.maximum(ZERO(), max_diff + self.CONFIDENCE)
        # The objective function only includes max(clf_loss, any_ensemble_loss)
        loss1 = tf.maximum(loss1, tf.squeeze(ensemble_loss))
        self.loss1 = reduce_sum(self.const * loss1)
        self.loss = self.loss1 + self.loss2

        # DEBUG
        # print("max_diff: ", max_diff)
        # print("ensemble_loss: ", ensemble_loss)
        # print("loss1: ", loss1)
        # print("reduce_sum loss1: ", self.loss1)

        # Setup the adam optimizer and keep track of variables we're creating
        start_vars = set(x.name for x in tf.global_variables())
        optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE)
        self.train = optimizer.minimize(self.loss, var_list=[modifier])
        end_vars = tf.global_variables()
        new_vars = [x for x in end_vars if x.name not in start_vars]

        # these are the variables to initialize when we run
        self.setup = []
        self.setup.append(self.timg.assign(self.assign_timg))
        self.setup.append(self.tlab.assign(self.assign_tlab))
        self.setup.append(self.const.assign(self.assign_const))

        self.init = tf.variables_initializer(var_list=[modifier] + new_vars)
Exemple #13
0
  def __init__(self, sess, model,cl_model, batch_size, confidence, targeted,
               learning_rate, binary_search_steps, max_iterations,
               abort_early, initial_const, clip_min, clip_max, num_labels,
               shape):
    
    self.sess = sess
    self.TARGETED = targeted
    self.LEARNING_RATE = learning_rate
    self.MAX_ITERATIONS = max_iterations
    self.BINARY_SEARCH_STEPS = binary_search_steps
    self.ABORT_EARLY = abort_early
    self.CONFIDENCE = confidence
    self.initial_const = initial_const
    self.batch_size = batch_size
    self.clip_min = clip_min
    self.clip_max = clip_max
    self.model = model
    self.cl_model = cl_model

    #convert model to tensorflow model

    


    self.repeat = binary_search_steps >= 10

    self.shape = shape = tuple([batch_size] + list(shape))
    #print("shape: ", shape)

    # the variable we're going to optimize over
    modifier = tf.Variable(np.zeros(shape, dtype=np_dtype))

    # these are variables to be more efficient in sending data to tf
    self.timg = tf.Variable(np.zeros(shape), dtype=tf_dtype, name='timg')
    self.targimg = tf.Variable(np.zeros(shape), dtype=tf_dtype, name='targimg')
    #self.tlab = tf.Variable(
     #   np.zeros((batch_size, num_labels)), dtype=tf_dtype, name='tlab')
    self.const = tf.Variable(
        np.zeros(batch_size), dtype=tf_dtype, name='const')

    # and here's what we use to assign them
    self.assign_timg = tf.placeholder(tf_dtype, shape, name='assign_timg')
    self.assign_targimg = tf.placeholder(tf_dtype, shape, name='assign_targimg')
    #self.assign_tlab = tf.placeholder(
     #   tf_dtype, (batch_size, num_labels), name='assign_tlab')
    self.assign_const = tf.placeholder(
        tf_dtype, [batch_size], name='assign_const')

    # the resulting instance, tanh'd to keep bounded from clip_min
    # to clip_max
    self.newimg = (tf.tanh(modifier + self.timg) + 1) / 2
    self.newimg = self.newimg * (clip_max - clip_min) + clip_min

    #targimg_lat = latent_layer_model.predict(self.targimg)
    '''
    tf_model_path_ae = convert_to_pb('cifar10_AE.h5','../cleverhans_tutorials/models','../cleverhans_tutorials/models', 'AE')
    tf_model_path_cl = convert_to_pb('cifar10_CNN.h5','../cleverhans_tutorials/models','../cleverhans_tutorials/models', 'Classifier')
    tf_model,tf_input,tf_output = load_graph(tf_model_path_ae)
    tf_cl_model,tf_cl_input,tf_cl_output = load_graph(tf_model_path_cl)
    
    #self.x_hat = model.predict(self.newimg, steps = 1)
    with tf.Graph().as_default() as graph1:

      x_hat_output  = tf_model.get_tensor_by_name(tf_output) 
      x_hat_input = tf_model.get_tensor_by_name(tf_input)
      #self.x_hat_lat = latent_layer_model.predict(self.newimg)
      #self.x_hat = graph1.run(self.x_hat, feed_dict = {x_1 : self.newimg})
      #self.y_hat_logit = cl_model.predict(self.x_hat, steps = 1)
    with tf.Graph().as_default() as graph2:  
      y_hat_logit = tf_cl_model.get_tensor_by_name(tf_cl_output)
      y_hat_logit_input = tf_cl_model.get_tensor_by_name(tf_cl_input) 
      #self.y_hat_logit = self.sess.run(self.y_hat_logit, feed_dict = {x_2 : self.x_hat})
      #self.y_hat_logit = cl_model.predict(self.x_hat, steps = 1)

      y_hat_output = tf.argmax(y_hat_logit, axis = 1)

    x_1 = tf.placeholder(tf.float32, (None, 32,32, 3))
    graph = tf.get_default_graph()
    meta_graph1 = tf.train.export_meta_graph(graph=graph1)
    meta_graph.import_scoped_meta_graph(meta_graph1, input_map={'x_hat_input': x_1}, import_scope='graph1',
    out1 = graph.get_tensor_by_name('graph1/tf_output:0'))

    meta_graph2 = tf.train.export_meta_graph(graph=graph2)
    meta_graph.import_scoped_meta_graph(meta_graph2, input_map={'y_hat_logit_input': out1}, import_scope='graph2')
    #self.y_targ_logit = cl_model.predict(self.targimg, steps = 1)
    self.y_targ_logit = tf_cl_model.get_tensor_by_name(tf_cls_output)
    self.y_targ_logit = sess.run(self.y_targ_logit, feed_dict = {tf_cl_model.get_tensor_by_name(tf_cl_input): self.targimg})
    self.y_targ = tf.argmax(self.y_targ_logit, axis = 1)
    '''
    # distance to the input data

    #print("model.outputs: ", model.outputs)
    #print("model.inputs: ", model.inputs)
    frozen_graph = freeze_session(K.get_session(),output_names=[out.op.name for out in model.outputs])
    tf.train.write_graph(frozen_graph, "../cleverhans_tutorials/models", "tf_model_AE.pb", as_text=False)

    from tensorflow.python.platform import gfile

    f = gfile.FastGFile("../cleverhans_tutorials/models/tf_model_AE.pb", 'rb')
    graph_def = tf.GraphDef()
    # Parses a serialized binary message into the current message.
    graph_def.ParseFromString(f.read())
    f.close()

    sess.graph.as_default()
    tf.import_graph_def(graph_def)
    reconstruction_tensor = sess.graph.get_tensor_by_name('import/activation_7/Sigmoid:0')
    #self.x_hat = reconstruction_tensor(self.newimg)

    #self.y_hat_logit = cl_model.predict(self.x_hat, steps=1)
    #self.y_hat = tf.argmax(self.y_hat_logit, axis = 1)
    #self.x_hat = sess.run(reconstruction_tensor, {'import/input_1:0': self.newimg})
    self.other = (tf.tanh(self.timg) + 1) / 2
    self.other =  self.other * (clip_max - clip_min) + clip_min
    self.l2dist = reduce_sum(
        tf.square(self.newimg - self.other), list(range(1, len(shape))))

    print("shape of l2_dist: ", np.shape(self.l2dist))

    
    epsilon = 10e-8
    
    loss1 = reduce_sum(tf.square(self.x_hat-self.targimg))
    
    # sum up the losses
    self.loss2 = reduce_sum(self.l2dist)
    self.loss1 = reduce_sum(self.const * loss1)
    self.loss = self.loss1 + self.loss2

    # Setup the adam optimizer and keep track of variables we're creating
    start_vars = set(x.name for x in tf.global_variables())
    optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE)
    self.train = optimizer.minimize(self.loss, var_list=[modifier])
    end_vars = tf.global_variables()
    new_vars = [x for x in end_vars if x.name not in start_vars]

    # these are the variables to initialize when we run
    self.setup = []
    self.setup.append(self.timg.assign(self.assign_timg))
    self.setup.append(self.targimg.assign(self.assign_targimg))
    #self.setup.append(self.tlab.assign(self.assign_tlab))
    self.setup.append(self.const.assign(self.assign_const))

    self.init = tf.variables_initializer(var_list=[modifier] + new_vars)
def fgm(x,
        logits,
        y=None,
        eps=0.3,
        ord=np.inf,
        clip_min=None,
        clip_max=None,
        clip_grad=False,
        targeted=False,
        sanity_checks=True):
    """
  TensorFlow implementation of the Fast Gradient Method.
  :param x: the input placeholder
  :param logits: output of model.get_logits
  :param y: (optional) A placeholder for the true labels. If targeted
            is true, then provide the target label. Otherwise, only provide
            this parameter if you'd like to use true labels when crafting
            adversarial samples. Otherwise, model predictions are used as
            labels to avoid the "label leaking" effect (explained in this
            paper: https://arxiv.org/abs/1611.01236). Default is None.
            Labels should be one-hot-encoded.
  :param eps: the epsilon (input variation parameter)
  :param ord: (optional) Order of the norm (mimics NumPy).
              Possible values: np.inf, 1 or 2.
  :param clip_min: Minimum float value for adversarial example components
  :param clip_max: Maximum float value for adversarial example components
  :param clip_grad: (optional bool) Ignore gradient components
                    at positions where the input is already at the boundary
                    of the domain, and the update step will get clipped out.
  :param targeted: Is the attack targeted or untargeted? Untargeted, the
                   default, will try to make the label incorrect. Targeted
                   will instead try to move in the direction of being more
                   like y.
  :return: a tensor for the adversarial example
  """

    asserts = []

    # If a data range was specified, check that the input was in that range
    if clip_min is not None:
        asserts.append(
            utils_tf.assert_greater_equal(x, tf.cast(clip_min, x.dtype)))

    if clip_max is not None:
        asserts.append(
            utils_tf.assert_less_equal(x, tf.cast(clip_max, x.dtype)))

    # Make sure the caller has not passed probs by accident
    assert logits.op.type != 'Softmax'

    if y is None:
        # Using model predictions as ground truth to avoid label leaking
        preds_max = reduce_max(logits, 1, keepdims=True)
        y = tf.to_float(tf.equal(logits, preds_max))
        y = tf.stop_gradient(y)
    y = y / reduce_sum(y, 1, keepdims=True)

    # Compute loss
    loss = softmax_cross_entropy_with_logits(labels=y, logits=logits)
    if targeted:
        loss = -loss

    # Define gradient of loss wrt input
    grad, = tf.gradients(loss, x)

    if clip_grad:
        grad = utils_tf.zero_out_clipped_grads(grad, x, clip_min, clip_max)

    optimal_perturbation = optimize_linear(grad, eps, ord)

    # Add perturbation to original example to obtain adversarial example
    adv_x = x + optimal_perturbation

    # If clipping is needed, reset all values outside of [clip_min, clip_max]
    if (clip_min is not None) or (clip_max is not None):
        # We don't currently support one-sided clipping
        assert clip_min is not None and clip_max is not None
        adv_x = utils_tf.clip_by_value(adv_x, clip_min, clip_max)

    if sanity_checks:
        with tf.control_dependencies(asserts):
            adv_x = tf.identity(adv_x)

    return adv_x
Exemple #15
0
def sparse_l1_descent(x,
                      logits,
                      y=None,
                      eps=1.0,
                      q=99,
                      loss_fn=softmax_cross_entropy_with_logits,
                      clip_min=None,
                      clip_max=None,
                      clip_grad=False,
                      targeted=False,
                      sanity_checks=True):
    """
  TensorFlow implementation of the Dense L1 Descent Method.
  :param x: the input placeholder
  :param logits: output of model.get_logits
  :param y: (optional) A placeholder for the true labels. If targeted
            is true, then provide the target label. Otherwise, only provide
            this parameter if you'd like to use true labels when crafting
            adversarial samples. Otherwise, model predictions are used as
            labels to avoid the "label leaking" effect (explained in this
            paper: https://arxiv.org/abs/1611.01236). Default is None.
            Labels should be one-hot-encoded.
  :param eps: the epsilon (input variation parameter)
  :param q: the percentile above which gradient values are retained. Either a
            scalar or a vector of same length as the input batch dimension.
  :param loss_fn: Loss function that takes (labels, logits) as arguments and
                  returns loss
  :param clip_min: Minimum float value for adversarial example components
  :param clip_max: Maximum float value for adversarial example components
  :param clip_grad: (optional bool) Ignore gradient components
                    at positions where the input is already at the boundary
                    of the domain, and the update step will get clipped out.
  :param targeted: Is the attack targeted or untargeted? Untargeted, the
                   default, will try to make the label incorrect. Targeted
                   will instead try to move in the direction of being more
                   like y.
  :return: a tensor for the adversarial example
  """

    asserts = []

    # If a data range was specified, check that the input was in that range
    if clip_min is not None:
        asserts.append(
            utils_tf.assert_greater_equal(x, tf.cast(clip_min, x.dtype)))

    if clip_max is not None:
        asserts.append(
            utils_tf.assert_less_equal(x, tf.cast(clip_max, x.dtype)))

    # Make sure the caller has not passed probs by accident
    assert logits.op.type != 'Softmax'

    if y is None:
        # Using model predictions as ground truth to avoid label leaking
        preds_max = reduce_max(logits, 1, keepdims=True)
        y = tf.cast(tf.equal(logits, preds_max), dtype=tf.float32)
        y = tf.stop_gradient(y)
    y = y / reduce_sum(y, 1, keepdims=True)

    # Compute loss
    loss = loss_fn(labels=y, logits=logits)
    if targeted:
        loss = -loss

    # Define gradient of loss wrt input
    grad, = tf.gradients(ys=loss, xs=x)

    if clip_grad:
        grad = utils_tf.zero_out_clipped_grads(grad, x, clip_min, clip_max)

    red_ind = list(range(1, len(grad.get_shape())))
    dim = tf.reduce_prod(input_tensor=tf.shape(input=x)[1:])

    abs_grad = tf.reshape(tf.abs(grad), (-1, dim))

    # if q is a scalar, broadcast it to a vector of same length as the batch dim
    q = tf.cast(tf.broadcast_to(q, tf.shape(input=x)[0:1]), tf.float32)
    k = tf.cast(tf.floor(q / 100 * tf.cast(dim, tf.float32)), tf.int32)

    # `tf.sort` is much faster than `tf.contrib.distributions.percentile`.
    # For TF <= 1.12, use `tf.nn.top_k` as `tf.sort` is not implemented.
    if LooseVersion(tf.__version__) <= LooseVersion('1.12.0'):
        # `tf.sort` is only available in TF 1.13 onwards
        sorted_grad = -tf.nn.top_k(-abs_grad, k=dim, sorted=True)[0]
    else:
        sorted_grad = tf.sort(abs_grad, axis=-1)

    idx = tf.stack((tf.range(tf.shape(input=abs_grad)[0]), k), -1)
    percentiles = tf.gather_nd(sorted_grad, idx)
    tied_for_max = tf.greater_equal(abs_grad, tf.expand_dims(percentiles, -1))
    tied_for_max = tf.reshape(tf.cast(tied_for_max, x.dtype),
                              tf.shape(input=grad))
    num_ties = tf.reduce_sum(input_tensor=tied_for_max,
                             axis=red_ind,
                             keepdims=True)

    optimal_perturbation = tf.sign(grad) * tied_for_max / num_ties

    # Add perturbation to original example to obtain adversarial example
    adv_x = x + utils_tf.mul(eps, optimal_perturbation)

    # If clipping is needed, reset all values outside of [clip_min, clip_max]
    if (clip_min is not None) or (clip_max is not None):
        # We don't currently support one-sided clipping
        assert clip_min is not None and clip_max is not None
        adv_x = utils_tf.clip_by_value(adv_x, clip_min, clip_max)

    if sanity_checks:
        with tf.control_dependencies(asserts):
            adv_x = tf.identity(adv_x)

    return adv_x
Exemple #16
0
    def __init__(self, sess, model, batch_size, confidence, targeted,
                 learning_rate, binary_search_steps, max_iterations,
                 abort_early, initial_const, clip_min, clip_max, num_labels,
                 shape):
        """
        Return a tensor that constructs adversarial examples for the given
        input. Generate uses tf.py_func in order to operate over tensors.

        :param sess: a TF session.
        :param model: a cleverhans.model.Model object.
        :param batch_size: Number of attacks to run simultaneously.
        :param confidence: Confidence of adversarial examples: higher produces
                           examples with larger l2 distortion, but more
                           strongly classified as adversarial.
        :param targeted: boolean controlling the behavior of the adversarial
                         examples produced. If set to False, they will be
                         misclassified in any wrong class. If set to True,
                         they will be misclassified in a chosen target class.
        :param learning_rate: The learning rate for the attack algorithm.
                              Smaller values produce better results but are
                              slower to converge.
        :param binary_search_steps: The number of times we perform binary
                                    search to find the optimal tradeoff-
                                    constant between norm of the purturbation
                                    and confidence of the classification.
        :param max_iterations: The maximum number of iterations. Setting this
                               to a larger value will produce lower distortion
                               results. Using only a few iterations requires
                               a larger learning rate, and will produce larger
                               distortion results.
        :param abort_early: If true, allows early aborts if gradient descent
                            is unable to make progress (i.e., gets stuck in
                            a local minimum).
        :param initial_const: The initial tradeoff-constant to use to tune the
                              relative importance of size of the pururbation
                              and confidence of classification.
                              If binary_search_steps is large, the initial
                              constant is not important. A smaller value of
                              this constant gives lower distortion results.
        :param clip_min: (optional float) Minimum input component value.
        :param clip_max: (optional float) Maximum input component value.
        :param num_labels: the number of classes in the model's output.
        :param shape: the shape of the model's input tensor.
        """

        self.sess = sess
        self.TARGETED = targeted
        self.LEARNING_RATE = learning_rate
        self.MAX_ITERATIONS = max_iterations
        self.BINARY_SEARCH_STEPS = binary_search_steps
        self.ABORT_EARLY = abort_early
        self.CONFIDENCE = confidence
        self.initial_const = initial_const
        self.batch_size = batch_size
        self.clip_min = clip_min
        self.clip_max = clip_max
        self.model = model

        self.repeat = binary_search_steps >= 10

        self.shape = shape = tuple([batch_size] + list(shape))

        # the variable we're going to optimize over
        modifier = tf.Variable(np.zeros(shape, dtype=np_dtype))

        # these are variables to be more efficient in sending data to tf
        self.timg = tf.Variable(np.zeros(shape), dtype=tf_dtype, name='timg')
        self.tlab = tf.Variable(np.zeros((batch_size, num_labels)),
                                dtype=tf_dtype,
                                name='tlab')
        self.const = tf.Variable(np.zeros(batch_size),
                                 dtype=tf_dtype,
                                 name='const')

        # and here's what we use to assign them
        self.assign_timg = tf.placeholder(tf_dtype, shape, name='assign_timg')
        self.assign_tlab = tf.placeholder(tf_dtype, (batch_size, num_labels),
                                          name='assign_tlab')
        self.assign_const = tf.placeholder(tf_dtype, [batch_size],
                                           name='assign_const')

        # the resulting instance, tanh'd to keep bounded from clip_min
        # to clip_max
        self.newimg = (tf.tanh(modifier + self.timg) + 1) / 2
        self.newimg = self.newimg * (clip_max - clip_min) + clip_min

        # prediction BEFORE-SOFTMAX of the model
        self.output = model.get_logits(self.newimg)

        # distance to the input data
        self.other = (tf.tanh(self.timg) + 1) / \
                     2 * (clip_max - clip_min) + clip_min
        self.l2dist = reduce_sum(tf.square(self.newimg - self.other),
                                 list(range(1, len(shape))))

        # compute the probability of the label class versus the maximum other
        real = reduce_sum((self.tlab) * self.output, 1)
        other = reduce_max((1 - self.tlab) * self.output - self.tlab * 10000,
                           1)

        if self.TARGETED:
            # if targeted, optimize for making the other class most likely
            loss1 = tf.maximum(ZERO(), other - real + self.CONFIDENCE)
        else:
            # if untargeted, optimize for making this class least likely.
            loss1 = tf.maximum(ZERO(), real - other + self.CONFIDENCE)

        # sum up the losses
        self.loss2 = reduce_sum(self.l2dist)
        self.loss1 = reduce_sum(self.const * loss1)
        self.loss = self.loss1 + self.loss2

        # Setup the adam optimizer and keep track of variables we're creating
        start_vars = set(x.name for x in tf.global_variables())
        optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE)
        self.train = optimizer.minimize(self.loss, var_list=[modifier])
        end_vars = tf.global_variables()
        new_vars = [x for x in end_vars if x.name not in start_vars]

        # these are the variables to initialize when we run
        self.setup = []
        self.setup.append(self.timg.assign(self.assign_timg))
        self.setup.append(self.tlab.assign(self.assign_tlab))
        self.setup.append(self.const.assign(self.assign_const))

        self.init = tf.variables_initializer(var_list=[modifier] + new_vars)
Exemple #17
0
  def __init__(self, sess, model, batch_size, confidence, targeted,
               learning_rate, const_a_min, const_a_max, max_iterations, 
               clip_min, clip_max, num_labels, shape):
               
    """
    Return a tensor that constructs adversarial examples for the given
    input. Generate uses tf.py_func in order to operate over tensors.

    :param sess: a TF session.
    :param model: a cleverhans.model.Model object.
    :param batch_size: Number of attacks to run simultaneously.
    :param confidence: Confidence of adversarial examples: higher produces
                       examples with larger l2 distortion, but more
                       strongly classified as adversarial.
    :param targeted: boolean controlling the behavior of the adversarial
                     examples produced. If set to False, they will be
                     misclassified in any wrong class. If set to True,
                     they will be misclassified in a chosen target class.
    :param learning_rate: The learning rate for the attack algorithm.
                          Smaller values produce better results but are
                          slower to converge.
    :param const_a_min: The constant value for parameter a (min).
    :param const_a_max: The constant value for parameter a (max).
    :param max_iterations: The maximum number of iterations. Setting this
                           to a larger value will produce lower distortion
                           results. Using only a few iterations requires
                           a larger learning rate, and will produce larger
                           distortion results.
    :param clip_min: (optional float) Minimum input component value.
    :param clip_max: (optional float) Maximum input component value.
    :param num_labels: the number of classes in the model's output.
    :param shape: the shape of the model's input tensor.
    """

    self.sess = sess
    self.TARGETED = targeted
    self.LEARNING_RATE = learning_rate
    self.MAX_ITERATIONS = max_iterations
    self.CONST_A_MIN = const_a_min
    self.CONST_A_MAX = const_a_max
    self.CONFIDENCE = confidence
    self.batch_size = batch_size
    self.clip_min = clip_min
    self.clip_max = clip_max
    self.model = model

    self.shape = shape = tuple([batch_size] + list(shape))

    # the variable we're going to optimize over
    modifier = tf.Variable(np.zeros(shape, dtype=np_dtype))

    # these are variables to be more efficient in sending data to tf
    self.timg = tf.Variable(np.zeros(shape), dtype=tf_dtype, name='timg')
    self.tlab = tf.Variable(
        np.zeros((batch_size, num_labels)), dtype=tf_dtype, name='tlab')
    self.const = tf.Variable(
        np.zeros(batch_size), dtype=tf_dtype, name='const')

    # and here's what we use to assign them
    self.assign_timg = tf.placeholder(tf_dtype, shape, name='assign_timg')
    self.assign_tlab = tf.placeholder(
        tf_dtype, (batch_size, num_labels), name='assign_tlab')
    self.assign_const = tf.placeholder(
        tf_dtype, [batch_size], name='assign_const')

    # the resulting instance, tanh'd to keep bounded from clip_min
    # to clip_max
    self.newimg = (tf.tanh(modifier + self.timg) + 1) / 2
    self.newimg = self.newimg * (clip_max - clip_min) + clip_min

    # prediction BEFORE-SOFTMAX of the model
    self.output = model.get_logits(self.newimg)

    # distance to the input data
    self.other = (tf.tanh(self.timg) + 1) / \
        2 * (clip_max - clip_min) + clip_min
    self.l2dist = reduce_sum(
        tf.square(self.newimg - self.other), list(range(1, len(shape))))

    # compute the probability of the label class versus the maximum other
    real = reduce_sum((self.tlab) * self.output, 1)
    other = reduce_max((1 - self.tlab) * self.output - self.tlab * 10000,
                       1)

    if self.TARGETED:
      # if targeted, optimize for making the other class most likely
      loss1 = tf.maximum(ZERO(), other - real + self.CONFIDENCE)
    else:
      # if untargeted, optimize for making this class least likely.
      loss1 = tf.maximum(ZERO(), real - other + self.CONFIDENCE)

    # sum up the losses
    self.loss2 = reduce_sum(self.l2dist)
    self.loss1 = reduce_sum(self.const * loss1)
    self.loss = self.loss1 + self.loss2
    
    # Setup the adam optimizer and keep track of variables we're creating
    start_vars = set(x.name for x in tf.global_variables())
    batch_step = tf.Variable(99, trainable=False)
    learn_rate = tf.train.inverse_time_decay(learning_rate=self.LEARNING_RATE*100,
                                             global_step=batch_step * batch_size,
                                             decay_steps=1.0, decay_rate=1.0)
    optimizer = tf.train.MomentumOptimizer(learning_rate=learn_rate, momentum=0.0,
                                           use_nesterov=False)
    # Passing batch_step to minimize() will increment it at each step
    self.train = optimizer.minimize(self.loss, var_list=[modifier], global_step=batch_step)
    end_vars = tf.global_variables()
    new_vars = [x for x in end_vars if x.name not in start_vars]

    # these are the variables to initialize when we run
    self.setup = []
    self.setup.append(self.timg.assign(self.assign_timg))
    self.setup.append(self.tlab.assign(self.assign_tlab))
    self.setup.append(self.const.assign(self.assign_const))

    self.init = tf.variables_initializer(var_list=[modifier] + new_vars)