def abalone_mlp(nb_classes=2, input_shape=None): layers = [Flatten(), Linear(10), Sigmoid(), Linear(10), Sigmoid(), Flatten(), Linear(nb_classes), Softmax() ] model = MLP(layers, input_shape) return model
def substitute_model(img_rows=28, img_cols=28, nb_classes=10): """ Defines the model architecture to be used by the substitute. Use the example model interface. :param img_rows: number of rows in input :param img_cols: number of columns in input :param nb_classes: number of classes in output :return: tensorflow model """ input_shape = (None, img_rows, img_cols, 1) # Define a fully connected model (it's different than the black-box) layers = [ Conv2D(64, (8, 8), (2, 2), "SAME"), ReLU(), Flatten(), Linear(200), ReLU(), Linear(100), ReLU(), Linear(nb_classes), Softmax() ] return make_basic_cnn() return MLP(layers, input_shape)
def cifar_net(n_classes): input_shape = ((None, im_size, im_size, im_chan)) layers = [ Conv2D(128, (5, 5), (1, 1), "SAME"), ReLU(), Conv2D(128, (3, 3), (1, 1), "SAME"), ReLU(), Conv2D(64, (3, 3), (2, 2), "SAME"), ReLU(), Conv2D(64, (3, 3), (1, 1), "SAME"), ReLU(), Conv2D(64, (3, 3), (1, 1), "SAME"), ReLU(), Conv2D(32, (3, 3), (2, 2), "SAME"), ReLU(), Conv2D(12, (3, 3), (1, 1), "SAME"), ReLU(), Flatten(), Linear(256), ReLU(), Linear(n_classes) ] model = MLP(layers, input_shape) return model
def fashion_net(n_classes): input_shape = ((None, im_size, im_size, im_chan)) layers = [ Conv2D(64, (8, 8), (2, 2), "SAME"), ReLU(), Conv2D(64 * 2, (6, 6), (2, 2), "VALID"), ReLU(), Conv2D(64 * 2, (5, 5), (1, 1), "VALID"), ReLU(), Flatten(), Linear(n_classes), Softmax() ] model = MLP(layers, input_shape) return model
def make_madry_ngpu(nb_classes=10, input_shape=(None, 28, 28, 1), **kwargs): """ Create a multi-GPU model similar to Madry et al. (arXiv:1706.06083). """ layers = [Conv2DnGPU(32, (5, 5), (1, 1), "SAME"), ReLU(), MaxPool((2, 2), (2, 2), "SAME"), Conv2DnGPU(64, (5, 5), (1, 1), "SAME"), ReLU(), MaxPool((2, 2), (2, 2), "SAME"), Flatten(), LinearnGPU(1024), ReLU(), LinearnGPU(nb_classes), Softmax()] model = MLPnGPU(layers, input_shape) return model
def PAP_substitute_model(img_rows=1, img_cols=2, nb_classes=2): """ Defines the model architecture to be used by the substitute. Use the example model interface. :param img_rows: number of rows in input :param img_cols: number of columns in input :param nb_classes: number of classes in output :return: tensorflow model """ input_shape = (None, img_rows, img_cols, 1) #code sous cette forme: vient de Papernot, je garde pour pas tout casser... # Define a fully connected model (it's different than the black-box) layers = [Flatten(), Linear(200), ReLU(), Linear(200), ReLU(), Linear(nb_classes), Softmax()] #layers = [Flatten(), Linear(nb_classes), Softmax()] #surrogate simplifié return MLP(layers, input_shape)
def substitute_model(img_rows=32, img_cols=32, nb_classes=10): """ Defines the model architecture to be used by the substitute. Use the example model interface. :param img_rows: number of rows in input :param img_cols: number of columns in input :param nb_classes: number of classes in output :return: tensorflow model """ input_shape = (None, img_rows, img_cols, 3) # Define a fully connected model (it's different than the black-box) layers = [Flatten(), SimpleLinear(200), ReLU(), SimpleLinear(200), ReLU(), SimpleLinear(nb_classes), SoftmaxT1()] return MLP(layers, input_shape)
def make_imagenet_cnn(input_shape=(None, 224, 224, 3)): layers = [ Conv2D(96, (3, 3), (2, 2), "VALID"), ReLU(), Conv2D(256, (3, 3), (2, 2), "VALID"), ReLU(), Conv2D(384, (3, 3), (2, 2), "VALID"), ReLU(), Conv2D(384, (3, 3), (2, 2), "VALID"), ReLU(), Conv2D(256, (3, 3), (2, 2), "VALID"), ReLU(), Flatten(), Linear(4096), ReLU(), Linear(4096), ReLU(), Linear(1000), Softmax() ] model = MLP(layers, input_shape) return model
def substitute_model(phase, img_rows=32, img_cols=32, nb_classes=10): """ Defines the model architecture to be used by the substitute. Use the example model interface. :param img_rows: number of rows in input :param img_cols: number of columns in input :param nb_classes: number of classes in output :return: tensorflow model """ input_shape = (None, img_rows, img_cols, 3) # Define a fully connected model (it's different than the black-box) ''' layers = [Flatten(), SimpleLinear(200), ReLU(), SimpleLinear(200), ReLU(), SimpleLinear(nb_classes), SoftmaxT1()] ''' nb_filters = 64 layers = [ Conv2D(False, nb_filters, (8, 8), (2, 2), "SAME", phase, 'conv1'), ReLU(), Conv2D(False, nb_filters * 2, (6, 6), (2, 2), "VALID", phase, 'conv2'), ReLU(), Conv2D(False, nb_filters * 2, (5, 5), (1, 1), "VALID", phase, 'conv3'), ReLU(), Flatten(), SimpleLinear(nb_classes), SoftmaxT1() ] model = MLP(layers, input_shape) print('Finished making basic cnn') return model