def test_risk_trans_pass(self): """Test calc_risk_transfer""" # Create impact object imp = Impact() imp.event_id = np.arange(10) imp.event_name = [0, 1, 2, 3, 4, 5, 6, 7, 8, 15] imp.date = np.arange(10) imp.coord_exp = np.array([[1, 2], [2, 3]]) imp.crs = DEF_CRS imp.eai_exp = np.array([1, 2]) imp.at_event = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 15]) imp.frequency = np.ones(10) / 5 imp.tot_value = 10 imp.aai_agg = 100 imp.unit = 'USD' imp.imp_mat = sparse.csr_matrix(np.empty((0, 0))) new_imp, imp_rt = imp.calc_risk_transfer(2, 10) self.assertEqual(new_imp.unit, imp.unit) self.assertEqual(new_imp.tot_value, imp.tot_value) np.testing.assert_array_equal(new_imp.imp_mat.toarray(), imp.imp_mat.toarray()) self.assertEqual(new_imp.event_name, imp.event_name) np.testing.assert_array_almost_equal_nulp(new_imp.event_id, imp.event_id) np.testing.assert_array_almost_equal_nulp(new_imp.date, imp.date) np.testing.assert_array_almost_equal_nulp(new_imp.frequency, imp.frequency) np.testing.assert_array_almost_equal_nulp(new_imp.coord_exp, []) np.testing.assert_array_almost_equal_nulp(new_imp.eai_exp, []) np.testing.assert_array_almost_equal_nulp( new_imp.at_event, [0, 1, 2, 2, 2, 2, 2, 2, 2, 5]) self.assertAlmostEqual(new_imp.aai_agg, 4.0) self.assertEqual(imp_rt.unit, imp.unit) self.assertEqual(imp_rt.tot_value, imp.tot_value) np.testing.assert_array_equal(imp_rt.imp_mat.toarray(), imp.imp_mat.toarray()) self.assertEqual(imp_rt.event_name, imp.event_name) np.testing.assert_array_almost_equal_nulp(imp_rt.event_id, imp.event_id) np.testing.assert_array_almost_equal_nulp(imp_rt.date, imp.date) np.testing.assert_array_almost_equal_nulp(imp_rt.frequency, imp.frequency) np.testing.assert_array_almost_equal_nulp(imp_rt.coord_exp, []) np.testing.assert_array_almost_equal_nulp(imp_rt.eai_exp, []) np.testing.assert_array_almost_equal_nulp( imp_rt.at_event, [0, 0, 0, 1, 2, 3, 4, 5, 6, 10]) self.assertAlmostEqual(imp_rt.aai_agg, 6.2)
def test_risk_trans_pass(self): """ Test calc_risk_transfer """ # Create impact object imp = Impact() imp.event_id = np.arange(10) imp.event_name = [0, 1, 2, 3, 4, 5, 6, 7, 8, 15] imp.date = np.arange(10) imp.coord_exp = np.array([[1, 2], [2, 3]]) imp.crs = DEF_CRS imp.eai_exp = np.array([1, 2]) imp.at_event = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 15]) imp.frequency = np.ones(10) / 5 imp.tot_value = 10 imp.aai_agg = 100 imp.unit = 'USD' imp.imp_mat = [] new_imp, imp_rt = imp.calc_risk_transfer(2, 10) self.assertEqual(new_imp.unit, imp.unit) self.assertEqual(new_imp.tot_value, imp.tot_value) self.assertEqual(new_imp.imp_mat, imp.imp_mat) self.assertEqual(new_imp.event_name, imp.event_name) self.assertTrue(np.allclose(new_imp.event_id, imp.event_id)) self.assertTrue(np.allclose(new_imp.date, imp.date)) self.assertTrue(np.allclose(new_imp.frequency, imp.frequency)) self.assertTrue(np.allclose(new_imp.coord_exp, np.array([]))) self.assertTrue(np.allclose(new_imp.eai_exp, np.array([]))) self.assertTrue( np.allclose(new_imp.at_event, np.array([0, 1, 2, 2, 2, 2, 2, 2, 2, 5]))) self.assertAlmostEqual(new_imp.aai_agg, 4.0) self.assertEqual(imp_rt.unit, imp.unit) self.assertEqual(imp_rt.tot_value, imp.tot_value) self.assertEqual(imp_rt.imp_mat, imp.imp_mat) self.assertEqual(imp_rt.event_name, imp.event_name) self.assertTrue(np.allclose(imp_rt.event_id, imp.event_id)) self.assertTrue(np.allclose(imp_rt.date, imp.date)) self.assertTrue(np.allclose(imp_rt.frequency, imp.frequency)) self.assertTrue(np.allclose(imp_rt.coord_exp, np.array([]))) self.assertTrue(np.allclose(imp_rt.eai_exp, np.array([]))) self.assertTrue( np.allclose(imp_rt.at_event, np.array([0, 0, 0, 1, 2, 3, 4, 5, 6, 10]))) self.assertAlmostEqual(imp_rt.aai_agg, 6.2)
def dummy_impact(): imp = Impact() imp.event_id = np.arange(6) imp.event_name = [0, 1, 'two', 'three', 30, 31] imp.date = np.arange(6) imp.coord_exp = np.array([[1, 2], [1.5, 2.5]]) imp.crs = DEF_CRS imp.eai_exp = np.array([7.2, 7.2]) imp.at_event = np.array([0, 2, 4, 6, 60, 62]) imp.frequency = np.array([1 / 6, 1 / 6, 1, 1, 1 / 30, 1 / 30]) imp.tot_value = 7 imp.aai_agg = 14.4 imp.unit = 'USD' imp.imp_mat = sparse.csr_matrix( np.array([[0, 0], [1, 1], [2, 2], [3, 3], [30, 30], [31, 31]])) return imp