Exemple #1
0
    def read_mat(self, file_name, var_names=None):
        """Read MATLAB file and store variables in exposures.

        Parameters:
            file_name (str): absolute path file
            var_names (dict, optional): dictionary containing the name of the
                MATLAB variables. Default: DEF_VAR_MAT.
        """
        LOGGER.info('Reading %s', file_name)
        if not var_names:
            var_names = DEF_VAR_MAT

        data = u_hdf5.read(file_name)
        try:
            data = data[var_names['sup_field_name']]
        except KeyError:
            pass

        try:
            data = data[var_names['field_name']]
            exposures = dict()

            _read_mat_obligatory(exposures, data, var_names)
            _read_mat_optional(exposures, data, var_names)
        except KeyError as var_err:
            LOGGER.error("Not existing variable: %s", str(var_err))
            raise var_err

        self.gdf = GeoDataFrame(data=exposures, crs=self.crs)
        _read_mat_metadata(self, data, file_name, var_names)
Exemple #2
0
    def read_mat(self, file_name, var_names=DEF_VAR_MAT):
        """Read MATLAB file and store variables in exposures.

        Parameters:
            file_name (str): absolute path file
            var_names (dict, optional): dictionary containing the name of the
                MATLAB variables. Default: DEF_VAR_MAT.
        """
        if var_names is None:
            var_names = DEF_VAR_MAT

        data = hdf5.read(file_name)
        try:
            data = data[var_names['sup_field_name']]
        except KeyError:
            pass

        try:
            data = data[var_names['field_name']]
            exposures = dict()

            _read_mat_obligatory(exposures, data, var_names)
            _read_mat_optional(exposures, data, var_names)
        except KeyError as var_err:
            LOGGER.error("Not existing variable: %s", str(var_err))
            raise var_err

        Exposures.__init__(self, data=exposures)
        _read_mat_metadata(self, data, file_name, var_names)
Exemple #3
0
    def read_mat(self, file_name, description='', var_names=DEF_VAR_MAT):
        """Read MATLAB file generated with previous MATLAB CLIMADA version.

        Parameters:
            file_name (str): absolute file name
            description (str, optional): description of the data
            var_names (dict, optional): name of the variables in the file
        """
        disc = hdf5.read(file_name)
        self.clear()
        self.tag.file_name = file_name
        self.tag.description = description
        try:
            disc = disc[var_names['sup_field_name']]
        except KeyError:
            pass

        try:
            disc = disc[var_names['field_name']]
            self.years = np.squeeze(disc[var_names['var_name']['year']]). \
                astype(int, copy=False)
            self.rates = np.squeeze(disc[var_names['var_name']['disc']])
        except KeyError as err:
            LOGGER.error("Not existing variable: %s", str(err))
            raise err
    def read_mat(self, file_name, description='', var_names=DEF_VAR_MAT):
        """
        Read MATLAB file generated with previous MATLAB CLIMADA version.

        Parameters
        ----------
        file_name: str
            filename including path and extension
        description: str, optional
            description of the data. The default is ''
        var_names: dict, optional
            name of the variables in the file. The Default is 
            DEF_VAR_MAT = {'sup_field_name': 'entity', 'field_name': 'discount',
               'var_name': {'year': 'year', 'disc': 'discount_rate'}}
        """
        
        disc = u_hdf5.read(file_name)
        self.clear()
        self.tag.file_name = str(file_name)
        self.tag.description = description
        try:
            disc = disc[var_names['sup_field_name']]
        except KeyError:
            pass

        try:
            disc = disc[var_names['field_name']]
            self.years = np.squeeze(disc[var_names['var_name']['year']]). \
                astype(int, copy=False)
            self.rates = np.squeeze(disc[var_names['var_name']['disc']])
        except KeyError as err:
            raise KeyError("Not existing variable: %s" % str(err)) from err
Exemple #5
0
    def read_mat(self, file_name, description='', centroids=None,
                 var_names=DEF_VAR_MAT):
        """Read climada hazard generate with the MATLAB code.

        Parameters:
            file_name (str): absolute file name
            description (str, optional): description of the data
            centroids (Centroids, optional): provide centroids if not contained
                in the file
            var_names (dict, default): name of the variables in the file,
                default: DEF_VAR_MAT constant

        Raises:
            KeyError
        """
        self.clear()
        self.tag.file_name = file_name
        self.tag.description = description
        try:
            data = hdf5.read(file_name)
            try:
                data = data[var_names['field_name']]
            except KeyError:
                pass

            haz_type = hdf5.get_string(data[var_names['var_name']['per_id']])
            self.tag.haz_type = haz_type
            self._read_centroids(centroids=centroids, var_names=var_names['var_cent'])
            self._read_att_mat(data, file_name, var_names)
        except KeyError as var_err:
            LOGGER.error("Not existing variable: %s", str(var_err))
            raise var_err
    def read_mat(self, file_name, var_names=None):
        """Read MATLAB file and store variables in exposures.

        Parameters:
            file_name (str): absolute path file
            var_names (dict, optional): dictionary containing the name of the
                MATLAB variables. Default: DEF_VAR_MAT.
        """
        LOGGER.info('Reading %s', file_name)
        if not var_names:
            var_names = DEF_VAR_MAT

        data = u_hdf5.read(file_name)
        try:
            data = data[var_names['sup_field_name']]
        except KeyError:
            pass

        try:
            data = data[var_names['field_name']]
            exposures = dict()

            _read_mat_obligatory(exposures, data, var_names)
            _read_mat_optional(exposures, data, var_names)
        except KeyError as var_err:
            raise KeyError(f"Variable not in MAT file: {var_names.get('field_name')}")\
                from var_err

        self.set_gdf(GeoDataFrame(data=exposures))

        _read_mat_metadata(self, data, file_name, var_names)
    def test_with_refs_pass(self):
        '''Allow to load references of the matlab file'''

        # Load input
        refs = True
        contents = hdf5.read(HAZ_TEST_MAT, refs)

        # Check read contents
        self.assertEqual(2, len(contents))
        self.assertTrue('hazard' in contents.keys())
        self.assertTrue('#refs#' in contents.keys())
    def test_hazard_pass(self):
        '''Checking result against matlab atl_prob.mat file'''

        # Load input
        contents = hdf5.read(HAZ_TEST_MAT)

        # Check read contents
        self.assertEqual(1, len(contents))
        self.assertTrue('hazard' in contents.keys())
        self.assertEqual(False, '#refs#' in contents.keys())

        hazard = contents['hazard']
        self.assertTrue('reference_year' in hazard.keys())
        self.assertTrue('lon' in hazard.keys())
        self.assertTrue('lat' in hazard.keys())
        self.assertTrue('centroid_ID' in hazard.keys())
        self.assertTrue('orig_years' in hazard.keys())
        self.assertTrue('orig_event_count' in hazard.keys())
        self.assertTrue('event_count' in hazard.keys())
        self.assertTrue('event_ID' in hazard.keys())
        self.assertTrue('category' in hazard.keys())
        self.assertTrue('orig_event_flag' in hazard.keys())
        self.assertTrue('yyyy' in hazard.keys())
        self.assertTrue('mm' in hazard.keys())
        self.assertTrue('dd' in hazard.keys())
        self.assertTrue('datenum' in hazard.keys())
        self.assertTrue('scenario' in hazard.keys())
        self.assertTrue('intensity' in hazard.keys())
        self.assertTrue('name' in hazard.keys())
        self.assertTrue('frequency' in hazard.keys())
        self.assertTrue('matrix_density' in hazard.keys())
        self.assertTrue('windfield_comment' in hazard.keys())
        self.assertTrue('peril_ID' in hazard.keys())
        self.assertTrue('filename' in hazard.keys())
        self.assertTrue('comment' in hazard.keys())
        self.assertTrue('date' in hazard.keys())
        self.assertTrue('units' in hazard.keys())
        self.assertTrue('orig_yearset' in hazard.keys())
        self.assertTrue('fraction' in hazard.keys())
        self.assertEqual(27, len(hazard.keys()))

        # Check some random values
        mat_shape = (len(contents['hazard']['event_ID']), \
             len(contents['hazard']['centroid_ID']))
        sp_mat = hdf5.get_sparse_csr_mat(hazard['intensity'], mat_shape)

        self.assertTrue(np.array_equal(np.array([[84], [67]]), \
                                              hazard['peril_ID']))
        self.assertEqual(34.537289477809473, sp_mat[2862, 97])
        self.assertEqual(-80, hazard['lon'][46])
        self.assertEqual(28, hazard['lat'][87])
        self.assertEqual(2016, hazard['reference_year'])
Exemple #9
0
    def read_mat(self, file_name, var_names=DEF_VAR_MAT):
        """Read centroids from CLIMADA's MATLAB version.

        Parameters
        ----------
        file_name : str
            absolute or relative file name
        var_names : dict, default
            name of the variables

        Raises
        ------
        KeyError
        """
        LOGGER.info('Reading %s', file_name)
        if var_names is None:
            var_names = DEF_VAR_MAT

        cent = u_hdf5.read(file_name)
        # Try open encapsulating variable FIELD_NAMES
        num_try = 0
        for field in var_names['field_names']:
            try:
                cent = cent[field]
                break
            except KeyError:
                num_try += 1
        if num_try == len(var_names['field_names']):
            LOGGER.warning("Variables are not under: %s.",
                           var_names['field_names'])

        try:
            cen_lat = np.squeeze(cent[var_names['var_name']['lat']])
            cen_lon = np.squeeze(cent[var_names['var_name']['lon']])
            self.set_lat_lon(cen_lat, cen_lon)

            try:
                self.dist_coast = np.squeeze(
                    cent[var_names['var_name']['dist_coast']])
            except KeyError:
                pass
            try:
                self.region_id = np.squeeze(
                    cent[var_names['var_name']['region_id']])
            except KeyError:
                pass
        except KeyError as err:
            LOGGER.error("Not existing variable: %s", str(err))
            raise err
    def test_get_string_pass(self):
        '''Check function to get a string from input integer array'''

        # Load input
        contents = hdf5.read(HAZ_TEST_MAT)

        # Convert several strings
        str_date = hdf5.get_string(contents['hazard']['date'])
        str_comment = hdf5.get_string(contents['hazard']['comment'])
        str_wf = hdf5.get_string(contents['hazard']['windfield_comment'])
        str_fn = hdf5.get_string(contents['hazard']['filename'])

        # Check results
        self.assertEqual('14-Nov-2017 10:09:05', str_date)
        self.assertEqual(
            'TC hazard event set, generated 14-Nov-2017 10:09:05', \
                str_comment)
        self.assertEqual(
            'generating 14450 windfields took 0.25 min ' + \
            '(0.0010 sec/event)', str_wf)
        self.assertEqual('/Users/aznarsig/Documents/MATLAB/climada_data/' + \
                         'hazards/atl_prob.mat', str_fn)
    def from_mat(cls, file_name, description='', var_names=None):
        """
        Read MATLAB file generated with previous MATLAB CLIMADA version.

        Parameters
        ----------
        file_name: str
            filename including path and extension
        description: str, optional
            description of the data. The default is ''
        var_names: dict, optional
            name of the variables in the file. The Default is
            DEF_VAR_MAT = {'sup_field_name': 'entity', 'field_name': 'discount',
               'var_name': {'year': 'year', 'disc': 'discount_rate'}}

        Returns
        -------
        climada.entity.DiscRates :
            The disc rates from matlab
        """
        if var_names is None:
            var_names = DEF_VAR_MAT
        disc = u_hdf5.read(file_name)
        tag = Tag(file_name=str(file_name), description=description)
        try:
            disc = disc[var_names['sup_field_name']]
        except KeyError:
            pass

        try:
            disc = disc[var_names['field_name']]
            years = np.squeeze(disc[var_names['var_name']['year']]). \
                astype(int, copy=False)
            rates = np.squeeze(disc[var_names['var_name']['disc']])
        except KeyError as err:
            raise KeyError("Not existing variable: %s" % str(err)) from err

        return cls(years=years, rates=rates, tag=tag)
    def test_get_sparse_mat_pass(self):
        '''Check contents of imported sparse matrix, using the function \
        to build a sparse matrix from the read HDF5 variable'''

        # Load input
        contents = hdf5.read(HAZ_TEST_MAT)

        # get matrix size
        mat_shape = (len(contents['hazard']['event_ID']), \
                     len(contents['hazard']['centroid_ID']))
        spr_mat = hdf5.get_sparse_csr_mat(contents['hazard']['intensity'], \
                                      mat_shape)

        self.assertEqual(mat_shape[0], spr_mat.shape[0])
        self.assertEqual(mat_shape[1], spr_mat.shape[1])
        self.assertEqual(0, spr_mat[0, 0])
        self.assertEqual(9.2029355562400745, spr_mat[7916, 98])
        self.assertEqual(34.426829019435729, spr_mat[12839, 96])
        self.assertEqual(61.81217342446773, spr_mat[1557, 97])
        self.assertEqual(6.4470644550625753, spr_mat[6658, 97])
        self.assertEqual(0, spr_mat[298, 9])
        self.assertEqual(19.385821399329995, spr_mat[15, 0])
        self.assertEqual(52.253444444444447, spr_mat[76, 95])
        self.assertEqual(0, spr_mat[126, 86])
Exemple #13
0
    def read_mat(self, file_name, description='', var_names=DEF_VAR_MAT):
        """Read MATLAB file generated with previous MATLAB CLIMADA version.

        Parameters:
            file_name (str): absolute file name
            description (str, optional): description of the data
            var_names (dict, optional): name of the variables in the file
        """
        def read_att_mat(measures, data, file_name, var_names):
            """Read MATLAB measures attributes"""
            num_mes = len(data[var_names['var_name']['name']])
            for idx in range(0, num_mes):
                meas = Measure()

                meas.name = hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['name']][idx][0])

                color_str = hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['color']][idx][0])
                meas.color_rgb = np.fromstring(color_str, dtype=float, sep=' ')
                meas.cost = data[var_names['var_name']['cost']][idx][0]
                meas.haz_type = hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['haz']][idx][0])
                meas.hazard_freq_cutoff = data[var_names['var_name']
                                               ['haz_frq']][idx][0]
                meas.hazard_set = hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['haz_set']][idx][0])
                try:
                    meas.hazard_inten_imp = (
                        data[var_names['var_name']['haz_int_a']][idx][0],
                        data[var_names['var_name']['haz_int_b']][0][idx])
                except KeyError:
                    meas.hazard_inten_imp = (
                        data[var_names['var_name']['haz_int_a'][:-2]][idx][0],
                        0)

                # different convention of signes followed in MATLAB!
                meas.mdd_impact = (
                    data[var_names['var_name']['mdd_a']][idx][0],
                    data[var_names['var_name']['mdd_b']][idx][0])
                meas.paa_impact = (
                    data[var_names['var_name']['paa_a']][idx][0],
                    data[var_names['var_name']['paa_b']][idx][0])
                meas.imp_fun_map = hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['fun_map']][idx][0])

                meas.exposures_set = hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['exp_set']][idx][0])
                exp_region_id = data[var_names['var_name']['exp_reg']][idx][0]
                if exp_region_id:
                    meas.exp_region_id = [exp_region_id]
                meas.risk_transf_attach = data[var_names['var_name']
                                               ['risk_att']][idx][0]
                meas.risk_transf_cover = data[var_names['var_name']
                                              ['risk_cov']][idx][0]

                measures.append(meas)

        data = hdf5.read(file_name)
        self.clear()
        self.tag.file_name = file_name
        self.tag.description = description
        try:
            data = data[var_names['sup_field_name']]
        except KeyError:
            pass

        try:
            data = data[var_names['field_name']]
            read_att_mat(self, data, file_name, var_names)
        except KeyError as var_err:
            LOGGER.error("Not existing variable %s", str(var_err))
            raise var_err
Exemple #14
0
    def read_mat(self, file_name, description='', var_names=DEF_VAR_MAT):
        """Read MATLAB file generated with previous MATLAB CLIMADA version.

        Parameters:
            file_name (str): absolute file name
            description (str, optional): description of the data
            var_names (dict, optional): name of the variables in the file
        """
        def _get_hdf5_funcs(imp, file_name, var_names):
            """Get rows that fill every impact function and its name."""
            func_pos = dict()
            for row, (fun_id, fun_type) in enumerate(
                    zip(imp[var_names['var_name']['fun_id']].squeeze(),
                        imp[var_names['var_name']['peril']].squeeze())):
                type_str = u_hdf5.get_str_from_ref(file_name, fun_type)
                key = (type_str, int(fun_id))
                if key not in func_pos:
                    func_pos[key] = list()
                func_pos[key].append(row)
            return func_pos

        def _get_hdf5_str(imp, idxs, file_name, var_name):
            """Get rows with same string in var_name."""
            prev_str = ""
            for row in idxs:
                cur_str = u_hdf5.get_str_from_ref(file_name, imp[var_name][row][0])
                if prev_str == "":
                    prev_str = cur_str
                elif prev_str != cur_str:
                    LOGGER.error("Impact function with two different %s.", var_name)
                    raise ValueError
            return prev_str

        imp = u_hdf5.read(file_name)
        self.clear()
        self.tag.file_name = str(file_name)
        self.tag.description = description

        try:
            imp = imp[var_names['sup_field_name']]
        except KeyError:
            pass
        try:
            imp = imp[var_names['field_name']]
            funcs_idx = _get_hdf5_funcs(imp, file_name, var_names)
            for imp_key, imp_rows in funcs_idx.items():
                func = ImpactFunc()
                func.haz_type = imp_key[0]
                func.id = imp_key[1]
                # check that this function only has one intensity unit, if provided
                try:
                    func.intensity_unit = _get_hdf5_str(imp, imp_rows,
                                                        file_name,
                                                        var_names['var_name']['unit'])
                except KeyError:
                    pass
                # check that this function only has one name
                try:
                    func.name = _get_hdf5_str(imp, imp_rows, file_name,
                                              var_names['var_name']['name'])
                except KeyError:
                    func.name = str(func.id)
                func.intensity = np.take(imp[var_names['var_name']['inten']], imp_rows)
                func.mdd = np.take(imp[var_names['var_name']['mdd']], imp_rows)
                func.paa = np.take(imp[var_names['var_name']['paa']], imp_rows)
                self.append(func)
        except KeyError as err:
            LOGGER.error("Not existing variable: %s", str(err))
            raise err
Exemple #15
0
    def from_mat(cls, file_name, description='', var_names=DEF_VAR_MAT):
        """Read MATLAB file generated with previous MATLAB CLIMADA version.

        Parameters
        ----------
        file_name : str
            absolute file name
        description : str, optional
            description of the data
        var_names : dict, optional
            name of the variables in the file

        Returns
        -------
        meas_set: climada.entity.MeasureSet()
            Measure Set from matlab file
        """
        def read_att_mat(measures, data, file_name, var_names):
            """Read MATLAB measures attributes"""
            num_mes = len(data[var_names['var_name']['name']])
            for idx in range(0, num_mes):
                meas = Measure()

                meas.name = u_hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['name']][idx][0])

                color_str = u_hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['color']][idx][0])
                meas.color_rgb = np.fromstring(color_str, dtype=float, sep=' ')
                meas.cost = data[var_names['var_name']['cost']][idx][0]
                meas.haz_type = u_hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['haz']][idx][0])
                meas.hazard_freq_cutoff = data[var_names['var_name']
                                               ['haz_frq']][idx][0]
                meas.hazard_set = u_hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['haz_set']][idx][0])
                try:
                    meas.hazard_inten_imp = (
                        data[var_names['var_name']['haz_int_a']][idx][0],
                        data[var_names['var_name']['haz_int_b']][0][idx])
                except KeyError:
                    meas.hazard_inten_imp = (
                        data[var_names['var_name']['haz_int_a'][:-2]][idx][0],
                        0)

                # different convention of signes followed in MATLAB!
                meas.mdd_impact = (
                    data[var_names['var_name']['mdd_a']][idx][0],
                    data[var_names['var_name']['mdd_b']][idx][0])
                meas.paa_impact = (
                    data[var_names['var_name']['paa_a']][idx][0],
                    data[var_names['var_name']['paa_b']][idx][0])
                meas.imp_fun_map = u_hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['fun_map']][idx][0])

                meas.exposures_set = u_hdf5.get_str_from_ref(
                    file_name, data[var_names['var_name']['exp_set']][idx][0])
                exp_region_id = data[var_names['var_name']['exp_reg']][idx][0]
                if exp_region_id:
                    meas.exp_region_id = [exp_region_id]
                meas.risk_transf_attach = data[var_names['var_name']
                                               ['risk_att']][idx][0]
                meas.risk_transf_cover = data[var_names['var_name']
                                              ['risk_cov']][idx][0]

                measures.append(meas)

        data = u_hdf5.read(file_name)
        meas_set = cls()
        meas_set.tag.file_name = str(file_name)
        meas_set.tag.description = description
        try:
            data = data[var_names['sup_field_name']]
        except KeyError:
            pass

        try:
            data = data[var_names['field_name']]
            read_att_mat(meas_set, data, file_name, var_names)
        except KeyError as var_err:
            raise KeyError("Variable not in MAT file: " +
                           str(var_err)) from var_err

        return meas_set
Exemple #16
0
    def from_mat(cls, file_name, description='', var_names=None):
        """Read MATLAB file generated with previous MATLAB CLIMADA version.

        Parameters
        ----------
        file_name : str
            absolute file name
        description : str, optional
            description of the data
        var_names : dict, optional
            name of the variables in the file

        Return
        ------
        impf_set : climada.entity.impact_func_set.ImpactFuncSet
            Impact func set as defined in matlab file.
        """
        if var_names is None:
            var_names = DEF_VAR_MAT

        def _get_hdf5_funcs(imp, file_name, var_names):
            """Get rows that fill every impact function and its name."""
            func_pos = dict()
            for row, (fun_id, fun_type) in enumerate(
                    zip(imp[var_names['var_name']['fun_id']].squeeze(),
                        imp[var_names['var_name']['peril']].squeeze())):
                type_str = u_hdf5.get_str_from_ref(file_name, fun_type)
                key = (type_str, int(fun_id))
                if key not in func_pos:
                    func_pos[key] = list()
                func_pos[key].append(row)
            return func_pos

        def _get_hdf5_str(imp, idxs, file_name, var_name):
            """Get rows with same string in var_name."""
            prev_str = ""
            for row in idxs:
                cur_str = u_hdf5.get_str_from_ref(file_name,
                                                  imp[var_name][row][0])
                if prev_str == "":
                    prev_str = cur_str
                elif prev_str != cur_str:
                    raise ValueError("Impact function with two different %s." %
                                     var_name)
            return prev_str

        imp = u_hdf5.read(file_name)
        impf_set = cls()
        impf_set.tag.file_name = str(file_name)
        impf_set.tag.description = description

        try:
            imp = imp[var_names['sup_field_name']]
        except KeyError:
            pass
        try:
            imp = imp[var_names['field_name']]
            funcs_idx = _get_hdf5_funcs(imp, file_name, var_names)
            for imp_key, imp_rows in funcs_idx.items():
                func = ImpactFunc()
                func.haz_type = imp_key[0]
                func.id = imp_key[1]
                # check that this function only has one intensity unit, if provided
                try:
                    func.intensity_unit = _get_hdf5_str(
                        imp, imp_rows, file_name,
                        var_names['var_name']['unit'])
                except KeyError:
                    pass
                # check that this function only has one name
                try:
                    func.name = _get_hdf5_str(imp, imp_rows, file_name,
                                              var_names['var_name']['name'])
                except KeyError:
                    func.name = str(func.id)
                func.intensity = np.take(imp[var_names['var_name']['inten']],
                                         imp_rows)
                func.mdd = np.take(imp[var_names['var_name']['mdd']], imp_rows)
                func.paa = np.take(imp[var_names['var_name']['paa']], imp_rows)
                impf_set.append(func)
        except KeyError as err:
            raise KeyError("Not existing variable: %s" % str(err)) from err

        return impf_set