Exemple #1
0
 def test_geo_im_from_array(self):
     values = np.array([1, 2.0, 5, 1])
     coord = np.array([[-17, 178], [-10, 180], [-27, 175], [-16, 186]])
     var_name = 'test'
     title = 'test'
     projection = ccrs.PlateCarree()
     cmap = 'viridis'
     ax = u_plot.geo_im_from_array(values, coord, var_name, title,
                   proj=projection, smooth=True, axes=None, figsize=(9, 13), cmap=cmap)
     self.assertEqual(var_name, ax.get_title())
     self.assertAlmostEqual(np.max(values), ax.collections[0].colorbar.vmax)
     self.assertAlmostEqual(np.min(values), ax.collections[0].colorbar.vmin)
     self.assertEqual(cmap, ax.collections[0].cmap.name)
     plt.close()
Exemple #2
0
    def _event_plot(self, event_id, mat_var, col_name, **kwargs):
        """"Plot an event of the input matrix.

        Parameters:
            event_id (int or np.array(int)): If event_id > 0, plot mat_var of
                event with id = event_id. If event_id = 0, plot maximum
                mat_var in each centroid. If event_id < 0, plot
                abs(event_id)-largest event.
            mat_var (sparse matrix): Sparse matrix where each row is an event
            col_name (sparse matrix): Colorbar label
            kwargs (optional): arguments for pcolormesh matplotlib function

        Returns:
            matplotlib.figure.Figure, matplotlib.axes._subplots.AxesSubplot
        """
        if not isinstance(event_id, np.ndarray):
            event_id = np.array([event_id])
        array_val = list()
        l_title = list()
        for ev_id in event_id:
            if ev_id > 0:
                try:
                    event_pos = np.where(self.event_id == ev_id)[0][0]
                except IndexError:
                    LOGGER.error('Wrong event id: %s.', ev_id)
                    raise ValueError from IndexError
                im_val = mat_var[event_pos, :].todense().transpose()
                title = 'Event ID %s: %s' % (str(self.event_id[event_pos]), \
                                          self.event_name[event_pos])
            elif ev_id < 0:
                max_inten = np.asarray(np.sum(mat_var, axis=1)).reshape(-1)
                event_pos = np.argpartition(max_inten, ev_id)[ev_id:]
                event_pos = event_pos[np.argsort(max_inten[event_pos])][0]
                im_val = mat_var[event_pos, :].todense().transpose()
                title = '%s-largest Event. ID %s: %s' % (np.abs(ev_id), \
                    str(self.event_id[event_pos]), self.event_name[event_pos])
            else:
                im_val = np.max(mat_var, axis=0).todense().transpose()
                title = '%s max intensity at each point' % self.tag.haz_type

            array_val.append(im_val)
            l_title.append(title)

        return u_plot.geo_im_from_array(array_val, self.centroids.coord,
                                        col_name, l_title, **kwargs)
    def plot_rp_imp(self,
                    return_periods=(25, 50, 100, 250),
                    log10_scale=True,
                    smooth=True,
                    axis=None,
                    **kwargs):
        """Compute and plot exceedance impact maps for different return periods.
        Calls local_exceedance_imp.

        Parameters:
            return_periods (tuple(int), optional): return periods to consider
            log10_scale (boolean, optional): plot impact as log10(impact)
            smooth (bool, optional): smooth plot to plot.RESOLUTIONxplot.RESOLUTION
            kwargs (optional): arguments for pcolormesh matplotlib function
                used in event plots

        Returns:
            matplotlib.axes._subplots.AxesSubplot,
            np.ndarray (return_periods.size x num_centroids)
        """
        imp_stats = self.local_exceedance_imp(np.array(return_periods))
        if imp_stats == []:
            LOGGER.error('Error: Attribute imp_mat is empty. Recalculate Impact'\
                         'instance with parameter save_mat=True')
            raise ValueError
        if log10_scale:
            if np.min(imp_stats) < 0:
                imp_stats_log = np.log10(abs(imp_stats) + 1)
                colbar_name = 'Log10(abs(Impact)+1) (' + self.unit + ')'
            elif np.min(imp_stats) < 1:
                imp_stats_log = np.log10(imp_stats + 1)
                colbar_name = 'Log10(Impact+1) (' + self.unit + ')'
            else:
                imp_stats_log = np.log10(imp_stats)
                colbar_name = 'Log10(Impact) (' + self.unit + ')'
        else:
            imp_stats_log = imp_stats
            colbar_name = 'Impact (' + self.unit + ')'
        title = list()
        for ret in return_periods:
            title.append('Return period: ' + str(ret) + ' years')
        axis = u_plot.geo_im_from_array(imp_stats_log, self.coord_exp, \
            colbar_name, title, smooth=smooth, axes=axis, **kwargs)

        return axis, imp_stats
Exemple #4
0
    def plot_rp_intensity(self, return_periods=(25, 50, 100, 250), **kwargs):
        """Compute and plot hazard exceedance intensity maps for different
        return periods. Calls local_exceedance_inten.

        Parameters:
            return_periods (tuple(int), optional): return periods to consider
            kwargs (optional): arguments for pcolormesh matplotlib function
                used in event plots

        Returns:
            matplotlib.figure.Figure, matplotlib.axes._subplots.AxesSubplot,
            np.ndarray (return_periods.size x num_centroids)
        """
        inten_stats = self.local_exceedance_inten(np.array(return_periods))
        colbar_name = 'Intensity (' + self.units + ')'
        title = list()
        for ret in return_periods:
            title.append('Return period: ' + str(ret) + ' years')
        fig, axis = u_plot.geo_im_from_array(inten_stats, self.centroids.coord,
                                             colbar_name, title, **kwargs)
        return fig, axis, inten_stats