def build_input_node(self): """Build and connect an input node to the pipeline.""" import os from os.path import join, exists from colorama import Fore import nipype.interfaces.utility as nutil import nipype.pipeline.engine as npe from clinica.utils.inputs import clinica_file_reader, clinica_group_reader from clinica.utils.input_files import ( t1_volume_final_group_template, t1_volume_native_tpm, t1_volume_native_tpm_in_mni, t1_volume_deformation_to_template, bids_pet_nii, T1W_NII) from clinica.utils.exceptions import ClinicaException from clinica.utils.ux import print_groups_in_caps_directory, print_images_to_process from clinica.iotools.utils.data_handling import check_relative_volume_location_in_world_coordinate_system from clinica.utils.filemanip import save_participants_sessions from clinica.utils.pet import read_psf_information, get_suvr_mask from clinica.utils.stream import cprint # Check that group already exists if not exists( join(self.caps_directory, 'groups', 'group-' + self.parameters['group_label'])): print_groups_in_caps_directory(self.caps_directory) raise ClinicaException( '%sGroup %s does not exist. Did you run t1-volume or t1-volume-create-dartel pipeline?%s' % (Fore.RED, self.parameters['group_label'], Fore.RESET)) # Tissues DataGrabber # ==================== all_errors = [] # Grab reference mask reference_mask_file = get_suvr_mask( self.parameters['suvr_reference_region']) # PET from BIDS directory try: pet_bids = clinica_file_reader( self.subjects, self.sessions, self.bids_directory, bids_pet_nii(self.parameters['acq_label'])) except ClinicaException as e: all_errors.append(e) # Native T1w-MRI try: t1w_bids = clinica_file_reader(self.subjects, self.sessions, self.bids_directory, T1W_NII) except ClinicaException as e: all_errors.append(e) # mask_tissues tissues_input = [] for tissue_number in self.parameters['mask_tissues']: try: current_file = clinica_file_reader( self.subjects, self.sessions, self.caps_directory, t1_volume_native_tpm_in_mni(tissue_number, False)) tissues_input.append(current_file) except ClinicaException as e: all_errors.append(e) # Tissues_input has a length of len(self.parameters['mask_tissues']). Each of these elements has a size of # len(self.subjects). We want the opposite: a list of size len(self.subjects) whose elements have a size of # len(self.parameters['mask_tissues']. The trick is to iter on elements with zip(*my_list) tissues_input_final = [] for subject_tissue_list in zip(*tissues_input): tissues_input_final.append(subject_tissue_list) tissues_input = tissues_input_final # Flowfields try: flowfields_caps = clinica_file_reader( self.subjects, self.sessions, self.caps_directory, t1_volume_deformation_to_template( self.parameters['group_label'])) except ClinicaException as e: all_errors.append(e) # Dartel Template try: final_template = clinica_group_reader( self.caps_directory, t1_volume_final_group_template(self.parameters['group_label'])) except ClinicaException as e: all_errors.append(e) if self.parameters['pvc_psf_tsv'] is not None: iterables_psf = read_psf_information( self.parameters['pvc_psf_tsv'], self.subjects, self.sessions) self.parameters['apply_pvc'] = True else: iterables_psf = [[]] * len(self.subjects) self.parameters['apply_pvc'] = False if self.parameters['apply_pvc']: # pvc tissues input pvc_tissues_input = [] for tissue_number in self.parameters['pvc_mask_tissues']: try: current_file = clinica_file_reader( self.subjects, self.sessions, self.caps_directory, t1_volume_native_tpm(tissue_number)) pvc_tissues_input.append(current_file) except ClinicaException as e: all_errors.append(e) if len(all_errors) == 0: pvc_tissues_input_final = [] for subject_tissue_list in zip(*pvc_tissues_input): pvc_tissues_input_final.append(subject_tissue_list) pvc_tissues_input = pvc_tissues_input_final else: pvc_tissues_input = [] if len(all_errors) > 0: error_message = 'Clinica faced error(s) while trying to read files in your CAPS/BIDS directories.\n' for msg in all_errors: error_message += str(msg) raise ClinicaException(error_message) check_relative_volume_location_in_world_coordinate_system( 'T1w-MRI', t1w_bids, self.parameters['acq_label'] + ' PET', pet_bids, self.bids_directory, self.parameters['acq_label']) # Save subjects to process in <WD>/<Pipeline.name>/participants.tsv folder_participants_tsv = os.path.join(self.base_dir, self.name) save_participants_sessions(self.subjects, self.sessions, folder_participants_tsv) if len(self.subjects): print_images_to_process(self.subjects, self.sessions) cprint('List available in %s' % os.path.join(folder_participants_tsv, 'participants.tsv')) cprint( 'The pipeline will last approximately 10 minutes per image.') read_input_node = npe.Node( name="LoadingCLIArguments", interface=nutil.IdentityInterface(fields=self.get_input_fields(), mandatory_inputs=True), iterables=[('pet_image', pet_bids), ('t1_image_native', t1w_bids), ('mask_tissues', tissues_input), ('psf', iterables_psf), ('flow_fields', flowfields_caps), ('pvc_mask_tissues', pvc_tissues_input)], synchronize=True) read_input_node.inputs.reference_mask = reference_mask_file read_input_node.inputs.dartel_template = final_template self.connect([(read_input_node, self.input_node, [('pet_image', 'pet_image'), ('t1_image_native', 't1_image_native'), ('mask_tissues', 'mask_tissues'), ('flow_fields', 'flow_fields'), ('dartel_template', 'dartel_template'), ('reference_mask', 'reference_mask'), ('psf', 'psf'), ('pvc_mask_tissues', 'pvc_mask_tissues')])])
def build_input_node(self): """Build and connect an input node to the pipeline.""" import os from os.path import exists, join import nipype.interfaces.utility as nutil import nipype.pipeline.engine as npe from clinica.iotools.utils.data_handling import ( check_relative_volume_location_in_world_coordinate_system, ) from clinica.utils.exceptions import ClinicaException from clinica.utils.filemanip import save_participants_sessions from clinica.utils.input_files import ( T1W_NII, bids_pet_nii, t1_volume_deformation_to_template, t1_volume_final_group_template, t1_volume_native_tpm, t1_volume_native_tpm_in_mni, ) from clinica.utils.inputs import clinica_file_reader, clinica_group_reader from clinica.utils.pet import get_suvr_mask, read_psf_information from clinica.utils.stream import cprint from clinica.utils.ux import ( print_groups_in_caps_directory, print_images_to_process, ) # Check that group already exists if not exists( join(self.caps_directory, "groups", f"group-{self.parameters['group_label']}")): print_groups_in_caps_directory(self.caps_directory) raise ClinicaException( f"Group {self.parameters['group_label']} does not exist. " "Did you run t1-volume or t1-volume-create-dartel pipeline?") # Tissues DataGrabber # ==================== all_errors = [] # Grab reference mask reference_mask_file = get_suvr_mask( self.parameters["suvr_reference_region"]) # PET from BIDS directory try: pet_bids = clinica_file_reader( self.subjects, self.sessions, self.bids_directory, bids_pet_nii(self.parameters["acq_label"]), ) except ClinicaException as e: all_errors.append(e) # Native T1w-MRI try: t1w_bids = clinica_file_reader(self.subjects, self.sessions, self.bids_directory, T1W_NII) except ClinicaException as e: all_errors.append(e) # mask_tissues tissues_input = [] for tissue_number in self.parameters["mask_tissues"]: try: current_file = clinica_file_reader( self.subjects, self.sessions, self.caps_directory, t1_volume_native_tpm_in_mni(tissue_number, False), ) tissues_input.append(current_file) except ClinicaException as e: all_errors.append(e) # Tissues_input has a length of len(self.parameters['mask_tissues']). Each of these elements has a size of # len(self.subjects). We want the opposite: a list of size len(self.subjects) whose elements have a size of # len(self.parameters['mask_tissues']. The trick is to iter on elements with zip(*my_list) tissues_input_final = [] for subject_tissue_list in zip(*tissues_input): tissues_input_final.append(subject_tissue_list) tissues_input = tissues_input_final # Flowfields try: flowfields_caps = clinica_file_reader( self.subjects, self.sessions, self.caps_directory, t1_volume_deformation_to_template( self.parameters["group_label"]), ) except ClinicaException as e: all_errors.append(e) # Dartel Template try: final_template = clinica_group_reader( self.caps_directory, t1_volume_final_group_template(self.parameters["group_label"]), ) except ClinicaException as e: all_errors.append(e) if self.parameters["pvc_psf_tsv"] is not None: iterables_psf = read_psf_information( self.parameters["pvc_psf_tsv"], self.subjects, self.sessions, self.parameters["acq_label"], ) self.parameters["apply_pvc"] = True else: iterables_psf = [[]] * len(self.subjects) self.parameters["apply_pvc"] = False if self.parameters["apply_pvc"]: # pvc tissues input pvc_tissues_input = [] for tissue_number in self.parameters["pvc_mask_tissues"]: try: current_file = clinica_file_reader( self.subjects, self.sessions, self.caps_directory, t1_volume_native_tpm(tissue_number), ) pvc_tissues_input.append(current_file) except ClinicaException as e: all_errors.append(e) if len(all_errors) == 0: pvc_tissues_input_final = [] for subject_tissue_list in zip(*pvc_tissues_input): pvc_tissues_input_final.append(subject_tissue_list) pvc_tissues_input = pvc_tissues_input_final else: pvc_tissues_input = [] if len(all_errors) > 0: error_message = "Clinica faced error(s) while trying to read files in your CAPS/BIDS directories.\n" for msg in all_errors: error_message += str(msg) raise ClinicaException(error_message) check_relative_volume_location_in_world_coordinate_system( "T1w-MRI", t1w_bids, self.parameters["acq_label"] + " PET", pet_bids, self.bids_directory, self.parameters["acq_label"], skip_question=self.parameters["skip_question"], ) # Save subjects to process in <WD>/<Pipeline.name>/participants.tsv folder_participants_tsv = os.path.join(self.base_dir, self.name) save_participants_sessions(self.subjects, self.sessions, folder_participants_tsv) if len(self.subjects): print_images_to_process(self.subjects, self.sessions) cprint("List available in %s" % os.path.join(folder_participants_tsv, "participants.tsv")) cprint( "The pipeline will last approximately 10 minutes per image.") read_input_node = npe.Node( name="LoadingCLIArguments", interface=nutil.IdentityInterface(fields=self.get_input_fields(), mandatory_inputs=True), iterables=[ ("pet_image", pet_bids), ("t1_image_native", t1w_bids), ("mask_tissues", tissues_input), ("psf", iterables_psf), ("flow_fields", flowfields_caps), ("pvc_mask_tissues", pvc_tissues_input), ], synchronize=True, ) read_input_node.inputs.reference_mask = reference_mask_file read_input_node.inputs.dartel_template = final_template # fmt: off self.connect([(read_input_node, self.input_node, [("pet_image", "pet_image"), ("t1_image_native", "t1_image_native"), ("mask_tissues", "mask_tissues"), ("flow_fields", "flow_fields"), ("dartel_template", "dartel_template"), ("reference_mask", "reference_mask"), ("psf", "psf"), ("pvc_mask_tissues", "pvc_mask_tissues")])])
def build_input_node(self): """Build and connect an input node to the pipeline.""" from os import pardir from os.path import abspath, dirname, exists, join import nipype.interfaces.utility as nutil import nipype.pipeline.engine as npe from clinica.utils.exceptions import ( ClinicaBIDSError, ClinicaCAPSError, ClinicaException, ) from clinica.utils.filemanip import extract_subjects_sessions_from_filename from clinica.utils.input_files import ( T1W_NII, T1W_TO_MNI_TRANSFROM, bids_pet_nii, ) from clinica.utils.inputs import ( RemoteFileStructure, clinica_file_reader, fetch_file, ) from clinica.utils.pet import get_suvr_mask from clinica.utils.stream import cprint from clinica.utils.ux import print_images_to_process # from clinica.iotools.utils.data_handling import check_volume_location_in_world_coordinate_system # Import references files root = dirname(abspath(join(abspath(__file__), pardir, pardir))) path_to_mask = join(root, "resources", "masks") url_aramis = "https://aramislab.paris.inria.fr/files/data/img_t1_linear/" FILE1 = RemoteFileStructure( filename="mni_icbm152_t1_tal_nlin_sym_09c.nii", url=url_aramis, checksum= "93359ab97c1c027376397612a9b6c30e95406c15bf8695bd4a8efcb2064eaa34", ) FILE2 = RemoteFileStructure( filename="ref_cropped_template.nii.gz", url=url_aramis, checksum= "67e1e7861805a8fd35f7fcf2bdf9d2a39d7bcb2fd5a201016c4d2acdd715f5b3", ) self.ref_template = join(path_to_mask, FILE1.filename) self.ref_crop = join(path_to_mask, FILE2.filename) self.ref_mask = get_suvr_mask(self.parameters["suvr_reference_region"]) if not (exists(self.ref_template)): try: fetch_file(FILE1, path_to_mask) except IOError as err: cprint( msg= f"Unable to download required template (mni_icbm152) for processing: {err}", lvl="error", ) if not (exists(self.ref_crop)): try: fetch_file(FILE2, path_to_mask) except IOError as err: cprint( msg= f"Unable to download required template (ref_crop) for processing: {err}", lvl="error", ) # Inputs from BIDS directory # pet file: PET_NII = bids_pet_nii(self.parameters["acq_label"]) try: pet_files = clinica_file_reader(self.subjects, self.sessions, self.bids_directory, PET_NII) except ClinicaException as e: err = ( "Clinica faced error(s) while trying to read pet files in your BIDS directory.\n" + str(e)) raise ClinicaBIDSError(err) # T1w file: try: t1w_files = clinica_file_reader(self.subjects, self.sessions, self.bids_directory, T1W_NII) except ClinicaException as e: err = ( "Clinica faced error(s) while trying to read t1w files in your BIDS directory.\n" + str(e)) raise ClinicaBIDSError(err) # Inputs from t1-linear pipeline # Transformation files from T1w files to MNI: try: t1w_to_mni_transformation_files = clinica_file_reader( self.subjects, self.sessions, self.caps_directory, T1W_TO_MNI_TRANSFROM) except ClinicaException as e: err = ( "Clinica faced error(s) while trying to read transformation files in your CAPS directory.\n" + str(e)) raise ClinicaCAPSError(err) if len(self.subjects): print_images_to_process(self.subjects, self.sessions) cprint("The pipeline will last approximately 3 minutes per image.") read_input_node = npe.Node( name="LoadingCLIArguments", iterables=[ ("t1w", t1w_files), ("pet", pet_files), ("t1w_to_mni", t1w_to_mni_transformation_files), ], synchronize=True, interface=nutil.IdentityInterface(fields=self.get_input_fields()), ) # fmt: off self.connect([ (read_input_node, self.input_node, [("t1w", "t1w")]), (read_input_node, self.input_node, [("pet", "pet")]), (read_input_node, self.input_node, [("t1w_to_mni", "t1w_to_mni")]), ])