def score2A(sim, est): return score2A_base(sim.U, np.argmax(est.qun, axis=1))
def score2A(sim, data_df): true_df = sim._get_data_df() ordered_loci_table = pd.merge(true_df, data_df, on='mutation_id') return score2A_base(sim.U, ordered_loci_table.cluster_id)
def score2A(sim, loci_table): return score2A_base(sim.U, loci_table.cluster_id)
def score2A(sim, loci_table): true_df = sim._get_data_df() return score2A_base(sim.U, loci_table.Cluster_Assignment)
else: row_list.append(np.nan) if phi_pred_values is not None: row_list.append( score1C_base(phi_true_values, phi_pred_values, weights_true, weights_pred)) else: row_list.append(np.nan) if pred_cluster_assign is not None: ordered_table = pd.merge(pred_cluster_assign, true_cluster_assign, on='mutation_id', how='inner') if len(true_cluster_assign) < 20000: row_list.append( score2A_base(ordered_table.true_cluster_id, ordered_table.pred_cluster_id)) else: row_list.append(np.nan) ordered_table = pd.merge(pred_subclonal, true_subclonal, on='mutation_id', how='inner') auc, accuracy, sensitivity, specificity, precision = \ score2C_base(ordered_table.true_subclonal, ordered_table.pred_subclonal) for v in (auc, accuracy, sensitivity, specificity, precision): row_list.append(v) else: for i in range(6): row_list.append(np.nan) if pred_profile is not None:
def score2A(sim, data_df): return score2A_base(sim.U, data_df.clonality_binary)
def score2A(data_df): return score2A_base(data_df.clone, data_df.cluster_id)
row_list.append(ll_ratio) row_list.append(pval) if J_pred is not None: row_list.append(score1B_base(J_true, J_pred)) else: row_list.append(np.nan) if phi_pred_values is not None: row_list.append(score1C_base(phi_true_values, phi_pred_values, weights_true, weights_pred)) else: row_list.append(np.nan) if pred_cluster_assign is not None: ordered_table = pd.merge(pred_cluster_assign, true_cluster_assign, on='mutation_id', how='inner') if len(true_cluster_assign)<20000: row_list.append(score2A_base(ordered_table.true_cluster_id, ordered_table.pred_cluster_id)) else: row_list.append(np.nan) ordered_table = pd.merge(pred_subclonal, true_subclonal, on='mutation_id', how='inner') auc, accuracy, sensitivity, specificity, precision = \ score2C_base(ordered_table.true_subclonal, ordered_table.pred_subclonal) for v in (auc, accuracy, sensitivity, specificity, precision): row_list.append(v) else: for i in range(6): row_list.append(np.nan) if pred_profile is not None: row_list.append(score_sig_1A_base(sig_profile_1A, pred_profile)) row_list.append(score_sig_1B_base(sig_profile_1B, pred_profile))
def score2A(sim, loci_table): true_df = sim._get_data_df() return score2A_base(sim.U, loci_table.cluster)