Exemple #1
0
def test_SpatialCoordinateVariables_add_to_dataset():
    lat = SpatialCoordinateVariable(numpy.arange(19, -1, -1))
    lon = SpatialCoordinateVariable(numpy.arange(10))
    coords = SpatialCoordinateVariables(lon, lat, Proj(init='EPSG:4326'))

    lat_varname = 'lat'
    lon_varname = 'lon'
    outfilename = 'test.nc'

    try:
        with Dataset(outfilename, 'w') as target_ds:
            coords.add_to_dataset(target_ds, lon_varname, lat_varname)

            assert lat_varname in target_ds.dimensions
            assert lat_varname in target_ds.variables
            assert len(target_ds.dimensions[lat_varname]) == lat.values.size
            assert numpy.array_equal(lat.values,
                                     target_ds.variables[lat_varname][:])

            assert lon_varname in target_ds.dimensions
            assert lon_varname in target_ds.variables
            assert len(target_ds.dimensions[lon_varname]) == lon.values.size
            assert numpy.array_equal(lon.values,
                                     target_ds.variables[lon_varname][:])
    finally:
        if os.path.exists(outfilename):
            os.remove(outfilename)
Exemple #2
0
def test_SpatialCoordinateVariables_slice_by_bbox():
    lat = SpatialCoordinateVariable(numpy.arange(19, -1, -1))
    lon = SpatialCoordinateVariable(numpy.arange(10))
    proj = Proj(init='EPSG:4326')
    coords = SpatialCoordinateVariables(lon, lat, proj)

    subset = coords.slice_by_bbox(BBox((1.75, 3.7, 6.2, 16.7), proj))
    assert numpy.array_equal(subset.x.values, numpy.arange(2, 6))
    assert subset.x.values[0] == 2
    assert subset.x.values[-1] == 5
    assert subset.y.values[0] == 16
    assert subset.y.values[-1] == 4
Exemple #3
0
def test_window_for_bbox():
    coords = SpatialCoordinateVariables.from_bbox(
        BBox([-124, 82, -122, 90], Proj(init='epsg:4326')), 20, 20)
    window = coords.get_window_for_bbox(BBox([-123.9, 82.4, -122.1, 89.6]))

    assert window.x_slice == slice(1, 19)
    assert window.y_slice == slice(1, 19)
    def _get_subsets(self, elevation, data, coords: SpatialCoordinateVariables, bbox):
        """ Returns subsets of elevation, data, and coords, clipped to the given bounds """

        x_slice = slice(*coords.x.indices_for_range(bbox.xmin, bbox.xmax))
        y_slice = slice(*coords.y.indices_for_range(bbox.ymin, bbox.ymax))

        return elevation[y_slice, x_slice], data[y_slice, x_slice], coords.slice_by_bbox(bbox)
Exemple #5
0
    def load_data(self):
        self.data_name = self.path.split(os.sep)[-1].split('.')[0]
        with Dataset(self.path, 'r') as ds:
            # This should be: self.variables = clover.netcdf.utilities.data_variables(ds)
            # but unfortunately clover's data_variables() method is broken under python3
            # currently this may cause problems with grid_mapping or *_bnds variables
            dimensions = list(ds.dimensions.keys())
            self.variables = [var for var in ds.variables if var not in dimensions]

            recognized_dims = {'x': 'y', 'lon': 'lat', 'longitude': 'latitude'}
            for x, y in recognized_dims.items():
                if x in dimensions:
                    self.x_dim, self.y_dim = x, y
                    break
            if self.x_dim is None:
                raise KeyError("NetCDF file doesn't have recognizable dimension names (x, lat, latitude, etc.)")

            # we need a time_info attribute even if there's no time info
            self.time_info = TemporalInfo()
            recognized_time_dims = ['time', 'year', 'month', 'date']
            for timedim in recognized_time_dims:
                if timedim in dimensions:
                    self.t_dim = timedim
                    if timedim in ds.variables:
                        timevar = DateVariable(ds.variables[timedim])
                        self.time_info.timestamps = timevar.datetimes.tolist()
                        # we don't want timezones, but sometimes clover adds them
                        if self.time_info.timestamps[0].tzinfo is not None:
                            self.time_info.timestamps = [d.replace(tzinfo=None) for d in self.time_info.timestamps]
                    else: # no time variable
                        wx.MessageDialog(App.get().app_controller.main_window,
                            caption='Missing Time Data',
                            message=('{} has a time dimension "{}" but no corresponding coordinate ' +
                            'variable. Using only final timestep.').format(self.data_name, timedim), style=wx.OK).ShowModal()
                    break

            # Determine spatial extent; if multiple vars, they must all have the same extent
            self.x = SpatialCoordinateVariable(ds.variables[self.x_dim])
            self.y = SpatialCoordinateVariable(ds.variables[self.y_dim])
            self.y_increasing = self.y.values[0] < self.y.values[-1]
            grid = clover.netcdf.describe.describe(ds)['variables'][self.variables[0]]['spatial_grid']
            ext = grid['extent']
            self.extent = Extent(*[ext[d] for d in ['xmin', 'ymin', 'xmax', 'ymax']])
            self._resolution = grid['x_resolution']
            self.affine = SpatialCoordinateVariables(self.x, self.y, None).affine
            self.var_shape = ds.variables[self.variables[0]].shape
            # if a var has a temporal dimension but no temporal data, we treat it as non-temporal:
            if not self.time_info.is_temporal and len(self.var_shape) == 3:
                self.var_shape = self.var_shape[1:]
Exemple #6
0
def describe(path_or_dataset):
    if isinstance(path_or_dataset, string_types):
        dataset = Dataset(path_or_dataset)
    else:
        dataset = path_or_dataset

    description = {
        'dimensions': {},
        'variables': {},
        'attributes': get_ncattrs(dataset)
    }

    for dimension_name in dataset.dimensions:
        dimension = dataset.dimensions[dimension_name]
        description['dimensions'][dimension_name] = {'length': len(dimension)}

    for variable_name in dataset.variables:
        variable = dataset.variables[variable_name]

        if not variable.dimensions:
            # Do not collect info about dimensionless variables (e.g., CRS variable)
            continue

        dtype = str(variable.dtype)
        if "'" in dtype:
            dtype = dtype.split("'")[1]

        attributes = get_ncattrs(variable)
        variable_info = {
            'attributes':
            attributes,
            'dimensions':
            variable.dimensions,
            'data_type':
            dtype,
            'name':
            attributes.get('long_name') or attributes.get('standard_name')
            or variable_name
        }

        if dtype not in ('str', ):
            if len(variable.shape) > 2:
                # Avoid loading the entire array into memory by iterating along the first index (usually time)
                variable_info.update({
                    'min':
                    min(variable[i, :].min().item()
                        for i in range(variable.shape[0])),
                    'max':
                    max(variable[i, :].max().item()
                        for i in range(variable.shape[0]))
                })
            else:
                data = variable[:]
                variable_info.update({
                    'min': data.min().item(),
                    'max': data.max().item()
                })

        if variable_name in dataset.dimensions and dtype not in ('str', ):
            dimension_variable = dataset.variables[variable_name]
            if len(dimension_variable.dimensions
                   ) == 1:  # range dimensions don't make sense for interval
                interval = get_interval(dimension_variable)
                if interval:
                    variable_info['interval'] = interval

        else:
            # Data variable
            proj4 = get_crs(dataset, variable_name)

            #extent
            if len(variable.dimensions) >= 2:
                x_variable_name = None
                y_variable_name = None
                time_variable_name = None
                for dimension_name in (x for x in variable.dimensions
                                       if x in dataset.variables):
                    attributes = get_ncattrs(dataset.variables[dimension_name])
                    standard_name = attributes.get('standard_name', None)
                    if standard_name in X_DIMENSION_STANDARD_NAMES or dimension_name in X_DIMENSION_COMMON_NAMES:
                        x_variable_name = dimension_name
                    elif standard_name in Y_DIMENSION_STANDARD_NAMES or dimension_name in Y_DIMENSION_COMMON_NAMES:
                        y_variable_name = dimension_name
                    elif standard_name in TIME_DIMENSION_STANDARD_NAMES or dimension_name in TIME_DIMENSION_COMMON_NAMES:
                        if len(dataset.dimensions[dimension_name]) > 1:
                            time_variable_name = dimension_name
                if x_variable_name and y_variable_name:
                    if proj4 is None and is_geographic(dataset, variable_name):
                        # Assume WGS84
                        proj4 = PROJ4_GEOGRAPHIC

                    coordinates = SpatialCoordinateVariables(
                        SpatialCoordinateVariable(
                            dataset.variables[x_variable_name]),
                        SpatialCoordinateVariable(
                            dataset.variables[y_variable_name]),
                        Proj(str(proj4)) if proj4 else None)

                    variable_info['spatial_grid'] = {
                        'extent': coordinates.bbox.as_dict(),
                        'x_dimension': x_variable_name,
                        'x_resolution': coordinates.x.pixel_size,
                        'y_dimension': y_variable_name,
                        'y_resolution': coordinates.y.pixel_size
                    }
                if time_variable_name:
                    time_variable = dataset.variables[time_variable_name]

                    time_info = {
                        'dimension': time_variable_name,
                    }

                    try:
                        date_variable = DateVariable(time_variable)
                        values = date_variable.datetimes
                        time_info['extent'] = [
                            values.min().isoformat(),
                            values.max().isoformat()
                        ]
                        time_info['interval_unit'] = date_variable.unit
                        interval = get_interval(time_variable)
                        if interval is not None:
                            time_info['interval'] = interval

                    except ValueError:
                        pass

                    variable_info['time'] = time_info

            if proj4:
                variable_info['proj4'] = proj4

        description['variables'][variable_name] = variable_info

    return description
Exemple #7
0
def warp_like(ds,
              ds_projection,
              variables,
              out_ds,
              template_ds,
              template_varname,
              resampling=RESAMPLING.nearest):
    """
    Warp one or more variables in a NetCDF file based on the coordinate reference system and
    spatial domain of a template NetCDF file.
    :param ds: source dataset
    :param ds_projection: source dataset coordiante reference system, proj4 string or EPSG:NNNN code
    :param variables: list of variable names in source dataset to warp
    :param out_ds: output dataset.  Must be opened in write or append mode.
    :param template_ds: template dataset
    :param template_varname: variable name for template data variable in template dataset
    :param resampling: resampling method.  See rasterio.warp.RESAMPLING for options
    """

    template_variable = template_ds.variables[template_varname]
    template_prj = Proj(get_crs(template_ds, template_varname))
    template_mask = template_variable[:].mask

    template_y_name, template_x_name = template_variable.dimensions[-2:]
    template_coords = SpatialCoordinateVariables.from_dataset(
        template_ds,
        x_name=template_x_name,
        y_name=template_y_name,
        projection=template_prj)
    # template_geo_bbox = template_coords.bbox.project(ds_prj, edge_points=21)  # TODO: add when needing to subset

    ds_y_name, ds_x_name = ds.variables[variables[0]].dimensions[-2:]
    proj = Proj(
        init=ds_projection) if 'EPSG:' in ds_projection.upper() else Proj(
            str(ds_projection))
    ds_coords = SpatialCoordinateVariables.from_dataset(ds,
                                                        x_name=ds_x_name,
                                                        y_name=ds_y_name,
                                                        projection=proj)

    with rasterio.drivers():
        # Copy dimensions for variable across to output
        for dim_name in template_variable.dimensions:
            if not dim_name in out_ds.dimensions:
                if dim_name in template_ds.variables and not dim_name in out_ds.variables:
                    copy_variable(template_ds, out_ds, dim_name)
                else:
                    copy_dimension(template_ds, out_ds, dim_name)

        for variable_name in variables:
            click.echo('Processing: {0}'.format(variable_name))

            variable = ds.variables[variable_name]
            fill_value = getattr(variable, '_FillValue',
                                 variable[0, 0].fill_value)

            for dim_name in variable.dimensions[:-2]:
                if not dim_name in out_ds.dimensions:
                    if dim_name in ds.variables:
                        copy_variable(ds, out_ds, dim_name)
                    else:
                        copy_dimension(ds, out_ds, dim_name)

            out_var = out_ds.createVariable(
                variable_name,
                variable.dtype,
                dimensions=variable.dimensions[:-2] +
                template_variable.dimensions,
                fill_value=fill_value)

            reproject_kwargs = {
                'src_transform': ds_coords.affine,
                'src_crs': CRS.from_string(ds_projection),
                'dst_transform': template_coords.affine,
                'dst_crs': template_prj.srs,
                'resampling': resampling,
                'src_nodata': fill_value,
                'dst_nodata': fill_value,
                'threads': 4
            }

            # TODO: may only need to select out what is in window

            if len(variable.shape) == 3:
                idxs = range(variable.shape[0])
                with click.progressbar(idxs) as bar:
                    for i in bar:
                        # print('processing slice: {0}'.format(i))

                        data = variable[i, :]
                        out = numpy.ma.empty(template_coords.shape,
                                             dtype=data.dtype)
                        out.mask = template_mask
                        out.fill(fill_value)
                        reproject(data, out, **reproject_kwargs)
                        out_var[i, :] = out

            else:
                data = variable[:]
                out = numpy.ma.empty(template_coords.shape, dtype=data.dtype)
                out.mask = template_mask
                out.fill(fill_value)
                reproject(data, out, **reproject_kwargs)
                out_var[:] = out
Exemple #8
0
def map_eems(
        eems_file,
        # output_directory,
        scale,
        format,
        src_crs,
        resampling):
    """
    Render a NetCDF EEMS model to a web map.
    """

    from EEMSBasePackage import EEMSCmd, EEMSProgram

    model = EEMSProgram(eems_file)

    # For each data producing command, store the netcdf file that contains it
    file_vars = dict()
    raw_variables = set()
    for cmd in model.orderedCmds:  # This is bottom up, may want to invert
        filename = None
        variable = None
        if cmd.HasResultName():
            filename = cmd.GetParam('OutFileName')
            variable = cmd.GetResultName()
        elif cmd.IsReadCmd():
            filename = cmd.GetParam('OutFileName')
            variable = cmd.GetParam('NewFieldName')
            raw_variables.add(variable)

        if filename and variable:
            if not filename in file_vars:
                file_vars[filename] = []
            file_vars[filename].append(variable)

    filenames = file_vars.keys()
    for filename in filenames:
        if not os.path.exists(filename):
            raise click.ClickException(
                'Could not find data file from EEMS model: {0}'.format(
                    filename))

    dst_crs = 'EPSG:3857'

    output_directory = tempfile.mkdtemp()
    click.echo('Using temp directory: {0}'.format(output_directory))
    # if not os.path.exists(output_directory):
    #     os.makedirs(output_directory)

    # Since fuzzy renderer is hardcoded, we can output it now
    fuzzy_renderer = palette_to_stretched_renderer(DEFAULT_PALETTES['fuzzy'],
                                                   '1,-1')
    fuzzy_renderer.get_legend(image_height=150)[0].to_image().save(
        os.path.join(output_directory, 'fuzzy_legend.png'))

    template_filename = filenames[0]
    template_var = file_vars[template_filename][0]
    with Dataset(template_filename) as ds:
        var_obj = ds.variables[template_var]
        dimensions = var_obj.dimensions
        shape = var_obj.shape
        num_dimensions = len(shape)
        if num_dimensions != 2:
            raise click.ClickException(
                'Only 2 dimensions are allowed on data variables for now')

        ds_crs = get_crs(ds, template_var)
        if not ds_crs and is_geographic(ds, template_var):
            ds_crs = 'EPSG:4326'  # Assume all geographic data is WGS84

        src_crs = CRS.from_string(ds_crs) if ds_crs else CRS(
            {'init': src_crs}) if src_crs else None

        # get transforms, assume last 2 dimensions on variable are spatial in row, col order
        y_dim, x_dim = dimensions[-2:]
        coords = SpatialCoordinateVariables.from_dataset(
            ds, x_dim, y_dim, projection=Proj(src_crs) if src_crs else None)
        #
        #     if mask is not None and not mask.shape == shape[-2:]:
        #         # Will likely break before this if collecting statistics
        #         raise click.BadParameter(
        #             'mask variable shape does not match shape of input spatial dimensions',
        #             param='--mask', param_hint='--mask'
        #         )
        #
        if not src_crs:
            raise click.BadParameter('must provide src_crs to reproject',
                                     param='--src-crs',
                                     param_hint='--src-crs')

        dst_crs = CRS.from_string(dst_crs)

        src_height, src_width = coords.shape
        dst_transform, dst_width, dst_height = calculate_default_transform(
            src_crs, dst_crs, src_width, src_height, *coords.bbox.as_list())

        reproject_kwargs = {
            'src_crs': src_crs,
            'src_transform': coords.affine,
            'dst_crs': dst_crs,
            'dst_transform': dst_transform,
            'resampling': getattr(RESAMPLING, resampling),
            'dst_shape': (dst_height, dst_width)
        }

        if not (dst_crs or src_crs):
            raise click.BadParameter(
                'must provide valid src_crs to get interactive map',
                param='--src-crs',
                param_hint='--src-crs')

        leaflet_anchors = get_leaflet_anchors(
            BBox.from_affine(dst_transform,
                             dst_width,
                             dst_height,
                             projection=Proj(dst_crs) if dst_crs else None))

    layers = {}
    for filename in filenames:
        with Dataset(filename) as ds:
            click.echo('Processing dataset {0}'.format(filename))

            for variable in file_vars[filename]:
                click.echo('Processing variable {0}'.format(variable))

                if not variable in ds.variables:
                    raise click.ClickException(
                        'variable {0} was not found in file: {1}'.format(
                            variable, filename))

                var_obj = ds.variables[variable]
                if not var_obj.dimensions == dimensions:
                    raise click.ClickException(
                        'All datasets must have the same dimensions for {0}'.
                        format(variable))

                data = var_obj[:]
                # if mask is not None:
                #     data = numpy.ma.masked_array(data, mask=mask)

                if variable in raw_variables:
                    palette = DEFAULT_PALETTES['raw']
                    palette_stretch = '{0},{1}'.format(data.max(), data.min())

                    renderer = palette_to_stretched_renderer(
                        palette, palette_stretch)
                    renderer.get_legend(
                        image_height=150, max_precision=2)[0].to_image().save(
                            os.path.join(output_directory,
                                         '{0}_legend.png'.format(variable)))
                else:
                    renderer = fuzzy_renderer

                image_filename = os.path.join(
                    output_directory, '{0}.{1}'.format(variable, format))
                data = warp_array(data, **reproject_kwargs)
                render_image(renderer,
                             data,
                             image_filename,
                             scale=scale,
                             format=format)

                local_filename = os.path.split(image_filename)[1]
                layers[variable] = local_filename

    index_html = os.path.join(output_directory, 'index.html')
    with open(index_html, 'w') as out:
        template = Environment(
            loader=PackageLoader('clover.cli')).get_template('eems_map.html')
        out.write(
            template.render(layers=json.dumps(layers),
                            bounds=str(leaflet_anchors),
                            tree=[[cmd, depth]
                                  for (cmd, depth) in model.GetCmdTree()],
                            raw_variables=list(raw_variables)))

    webbrowser.open(index_html)
Exemple #9
0
def process_web_outputs(results, job, publish_raster_results=False, renderer_or_fn=None):
    outputs = results.format_args()

    for k, v in six.iteritems(outputs):
        if is_raster(v) and publish_raster_results:
            service_name = '{0}/{1}'.format(job.uuid, k)
            rel_path = '{}.nc'.format(service_name)
            abs_path = os.path.join(SERVICE_DATA_ROOT, rel_path)
            os.makedirs(os.path.dirname(abs_path))

            with Dataset(abs_path, 'w', format='NETCDF4') as ds:
                if v.extent.projection.is_latlong():
                    x_var = 'longitude'
                    y_var = 'latitude'
                else:
                    x_var = 'x'
                    y_var = 'y'

                coord_vars = SpatialCoordinateVariables.from_bbox(v.extent, *reversed(v.shape))
                coord_vars.add_to_dataset(ds, x_var, y_var)

                fill_value = v.fill_value if is_masked(v) else None
                data_var = ds.createVariable('data', v.dtype, dimensions=(y_var, x_var), fill_value=fill_value)
                data_var[:] = v
                set_crs(ds, 'data', v.extent.projection)

            if callable(renderer_or_fn):
                renderer = renderer_or_fn(v)
            elif renderer_or_fn is None:
                renderer = StretchedRenderer(
                    [(numpy.min(v).item(), Color(0, 0, 0)), (numpy.max(v).item(), Color(255, 255, 255))]
                )
            else:
                renderer = renderer_or_fn

            with transaction.atomic():
                service = Service.objects.create(
                    name=service_name,
                    description='This service has been automatically generated from the result of a geoprocessing job.',
                    data_path=rel_path,
                    projection=v.extent.projection.srs,
                    full_extent=v.extent,
                    initial_extent=v.extent,
                )
                Variable.objects.create(
                    service=service,
                    index=0,
                    variable='data',
                    projection=v.extent.projection.srs,
                    x_dimension=x_var,
                    y_dimension=y_var,
                    name='data',
                    renderer=renderer,
                    full_extent=v.extent
                )
                ProcessingResultService.objects.create(job=job, service=service)

            outputs[k] = service_name

        elif is_ndarray(v):
            if v.size < numpy.get_printoptions()['threshold']:
                outputs[k] = v.tolist()
            else:
                outputs[k] = str(v)

    return outputs
Exemple #10
0
def render_netcdf(filename_pattern, variable, output_directory, renderer_file,
                  save_file, renderer_type, colormap, fill, colorspace,
                  palette, palette_stretch, scale, id_variable, lh,
                  legend_breaks, legend_ticks, legend_precision, format,
                  src_crs, dst_crs, res, resampling, anchors, interactive_map,
                  mask_path):
    """
    Render netcdf files to images.

    colormap is ignored if renderer_file is provided

    --dst-crs is ignored if using --map option (always uses EPSG:3857

    If no colormap or palette is provided, a default palette may be chosen based on the name of the variable.

    If provided, mask must be 1 for areas to be masked out, and 0 otherwise.  It
    must be in the same CRS as the input datasets, and have the same spatial
    dimensions.

    """

    # Parameter overrides
    if interactive_map:
        dst_crs = 'EPSG:3857'

    filenames = glob.glob(filename_pattern)
    if not filenames:
        raise click.BadParameter('No files found matching that pattern',
                                 param='filename_pattern',
                                 param_hint='FILENAME_PATTERN')

    if not os.path.exists(output_directory):
        os.makedirs(output_directory)

    mask = get_mask(mask_path) if mask_path is not None else None

    if renderer_file is not None and not save_file:
        if not os.path.exists(renderer_file):
            raise click.BadParameter('does not exist',
                                     param='renderer_file',
                                     param_hint='renderer_file')

        # see https://bitbucket.org/databasin/ncdjango/wiki/Home for format
        renderer_dict = json.loads(open(renderer_file).read())

        if variable in renderer_dict and not 'colors' in renderer_dict:
            renderer_dict = renderer_dict[variable]

        renderer_type = renderer_dict['type']
        if renderer_type == 'stretched':
            colors = ','.join([str(c[0]) for c in renderer_dict['colors']])
            if 'min' in colors or 'max' in colors or 'mean' in colors:
                statistics = collect_statistics(filenames, (variable, ),
                                                mask=mask)[variable]
                for entry in renderer_dict['colors']:
                    if isinstance(entry[0], basestring):
                        if entry[0] in ('min', 'max', 'mean'):
                            entry[0] = statistics[entry[0]]
                        elif '*' in entry[0]:
                            rel_value, statistic = entry[0].split('*')
                            entry[0] = float(rel_value) * statistics[statistic]

        renderer = renderer_from_dict(renderer_dict)

    else:

        if renderer_type == 'stretched':
            if palette is not None:
                renderer = palette_to_stretched_renderer(palette,
                                                         palette_stretch,
                                                         filenames,
                                                         variable,
                                                         fill_value=fill,
                                                         mask=mask)

            elif colormap is None and variable in DEFAULT_PALETTES:
                palette, palette_stretch = DEFAULT_PALETTES[variable]
                renderer = palette_to_stretched_renderer(palette,
                                                         palette_stretch,
                                                         filenames,
                                                         variable,
                                                         fill_value=fill,
                                                         mask=mask)

            else:
                if colormap is None:
                    colormap = 'min:#000000,max:#FFFFFF'
                renderer = colormap_to_stretched_renderer(colormap,
                                                          colorspace,
                                                          filenames,
                                                          variable,
                                                          fill_value=fill,
                                                          mask=mask)

        elif renderer_type == 'classified':
            if not palette:
                raise click.BadParameter(
                    'palette required for classified (for now)',
                    param='--palette',
                    param_hint='--palette')

            renderer = palette_to_classified_renderer(
                palette,
                filenames,
                variable,
                method='equal',
                fill_value=fill,
                mask=mask)  # TODO: other methods

    if save_file:

        if os.path.exists(save_file):
            with open(save_file, 'r+') as output_file:
                data = json.loads(output_file.read())
                output_file.seek(0)
                output_file.truncate()
                data[variable] = renderer.serialize()
                output_file.write(json.dumps(data, indent=4))
        else:
            with open(save_file, 'w') as output_file:
                output_file.write(json.dumps({variable: renderer.serialize()}))

    if renderer_type == 'stretched':
        if legend_ticks is not None and not legend_breaks:
            legend_ticks = [float(v) for v in legend_ticks.split(',')]

        legend = renderer.get_legend(
            image_height=lh,
            breaks=legend_breaks,
            ticks=legend_ticks,
            max_precision=legend_precision)[0].to_image()

    elif renderer_type == 'classified':
        legend = composite_elements(renderer.get_legend())

    legend.save(
        os.path.join(output_directory, '{0}_legend.png'.format(variable)))

    with Dataset(filenames[0]) as ds:
        var_obj = ds.variables[variable]
        dimensions = var_obj.dimensions
        shape = var_obj.shape
        num_dimensions = len(shape)

        if num_dimensions == 3:
            if id_variable:
                if shape[0] != ds.variables[id_variable][:].shape[0]:
                    raise click.BadParameter(
                        'must be same dimensionality as 3rd dimension of {0}'.
                        format(variable),
                        param='--id_variable',
                        param_hint='--id_variable')
            else:
                # Guess from the 3rd dimension
                guess = dimensions[0]
                if guess in ds.variables and ds.variables[guess][:].shape[
                        0] == shape[0]:
                    id_variable = guess

        ds_crs = get_crs(ds, variable)
        if not ds_crs and is_geographic(ds, variable):
            ds_crs = 'EPSG:4326'  # Assume all geographic data is WGS84

        src_crs = CRS.from_string(ds_crs) if ds_crs else CRS(
            {'init': src_crs}) if src_crs else None

        # get transforms, assume last 2 dimensions on variable are spatial in row, col order
        y_dim, x_dim = dimensions[-2:]
        coords = SpatialCoordinateVariables.from_dataset(
            ds,
            x_dim,
            y_dim,
            projection=Proj(src_crs.to_dict()) if src_crs else None)

        if mask is not None and not mask.shape == shape[-2:]:
            # Will likely break before this if collecting statistics
            raise click.BadParameter(
                'mask variable shape does not match shape of input spatial dimensions',
                param='--mask',
                param_hint='--mask')

        flip_y = False
        reproject_kwargs = None
        if dst_crs is not None:
            if not src_crs:
                raise click.BadParameter('must provide src_crs to reproject',
                                         param='--src-crs',
                                         param_hint='--src-crs')

            dst_crs = CRS.from_string(dst_crs)

            src_height, src_width = coords.shape
            dst_transform, dst_width, dst_height = calculate_default_transform(
                src_crs,
                dst_crs,
                src_width,
                src_height,
                *coords.bbox.as_list(),
                resolution=res)

            reproject_kwargs = {
                'src_crs': src_crs,
                'src_transform': coords.affine,
                'dst_crs': dst_crs,
                'dst_transform': dst_transform,
                'resampling': getattr(RESAMPLING, resampling),
                'dst_shape': (dst_height, dst_width)
            }

        else:
            dst_transform = coords.affine
            dst_height, dst_width = coords.shape
            dst_crs = src_crs

            if coords.y.is_ascending_order():
                # Only needed if we are not already reprojecting the data, since that will flip it automatically
                flip_y = True

        if anchors or interactive_map:
            if not (dst_crs or src_crs):
                raise click.BadParameter(
                    'must provide at least src_crs to get Leaflet anchors or interactive map',
                    param='--src-crs',
                    param_hint='--src-crs')

            leaflet_anchors = get_leaflet_anchors(
                BBox.from_affine(
                    dst_transform,
                    dst_width,
                    dst_height,
                    projection=Proj(dst_crs) if dst_crs else None))

            if anchors:
                click.echo('Anchors: {0}'.format(leaflet_anchors))

    layers = {}
    for filename in filenames:
        with Dataset(filename) as ds:
            click.echo('Processing {0}'.format(filename))

            filename_root = os.path.split(filename)[1].replace('.nc', '')

            if not variable in ds.variables:
                raise click.BadParameter(
                    'variable {0} was not found in file: {1}'.format(
                        variable, filename),
                    param='variable',
                    param_hint='VARIABLE')

            var_obj = ds.variables[variable]
            if not var_obj.dimensions == dimensions:
                raise click.ClickException(
                    'All datasets must have the same dimensions for {0}'.
                    format(variable))

            if num_dimensions == 2:
                data = var_obj[:]
                if mask is not None:
                    data = numpy.ma.masked_array(data, mask=mask)
                image_filename = os.path.join(
                    output_directory,
                    '{0}_{1}.{2}'.format(filename_root, variable, format))
                if reproject_kwargs:
                    data = warp_array(data, **reproject_kwargs)
                render_image(renderer,
                             data,
                             image_filename,
                             scale,
                             flip_y=flip_y,
                             format=format)

                local_filename = os.path.split(image_filename)[1]
                layers[os.path.splitext(local_filename)[0]] = local_filename

            elif num_dimensions == 3:
                for index in range(shape[0]):
                    id = ds.variables[id_variable][
                        index] if id_variable is not None else index
                    image_filename = os.path.join(
                        output_directory,
                        '{0}_{1}__{2}.{3}'.format(filename_root, variable, id,
                                                  format))
                    data = var_obj[index]
                    if mask is not None:
                        data = numpy.ma.masked_array(data, mask=mask)
                    if reproject_kwargs:
                        data = warp_array(data, **reproject_kwargs)
                    render_image(renderer,
                                 data,
                                 image_filename,
                                 scale,
                                 flip_y=flip_y,
                                 format=format)

                    local_filename = os.path.split(image_filename)[1]
                    layers[os.path.splitext(local_filename)
                           [0]] = local_filename

            # TODO: not tested recently.  Make sure still correct
            # else:
            #     # Assume last 2 components of shape are lat & lon, rest are iterated over
            #     id_variables = None
            #     if id_variable is not None:
            #         id_variables = id_variable.split(',')
            #         for index, name in enumerate(id_variables):
            #             if name:
            #                 assert data.shape[index] == ds.variables[name][:].shape[0]
            #
            #     ranges = []
            #     for dim in data.shape[:-2]:
            #         ranges.append(range(0, dim))
            #     for combined_index in product(*ranges):
            #         id_parts = []
            #         for index, dim_index in enumerate(combined_index):
            #             if id_variables is not None and index < len(id_variables) and id_variables[index]:
            #                 id = ds.variables[id_variables[index]][dim_index]
            #
            #                 if not isinstance(id, basestring):
            #                     if isinstance(id, Iterable):
            #                         id = '_'.join((str(i) for i in id))
            #                     else:
            #                         id = str(id)
            #
            #                 id_parts.append(id)
            #
            #             else:
            #                 id_parts.append(str(dim_index))
            #
            #         combined_id = '_'.join(id_parts)
            #         image_filename = os.path.join(output_directory, '{0}__{1}.{2}'.format(filename_root, combined_id, format))
            #         if reproject_kwargs:
            #             data = warp_array(data, **reproject_kwargs)  # NOTE: lack of index will break this
            #         render_image(renderer, data[combined_index], image_filename, scale, flip_y=flip_y, format=format)
            #
            #         local_filename = os.path.split(image_filename)[1]
            #         layers[os.path.splitext(local_filename)[0]] = local_filename

    if interactive_map:
        index_html = os.path.join(output_directory, 'index.html')
        with open(index_html, 'w') as out:
            template = Environment(
                loader=PackageLoader('clover.cli')).get_template('map.html')
            out.write(
                template.render(layers=json.dumps(layers),
                                bounds=str(leaflet_anchors),
                                variable=variable))

        webbrowser.open(index_html)
    def handle(self, *args, **options):
        message = (
            "WARNING: This will update all service data, casting each to it's smallest possible data type. Do you want "
            "to continue? [y/n]"
        )
        if input(message).lower() not in {'y', 'yes'}:
            return

        for service in Service.objects.all():
            if service.variable_set.all().count() > 1:
                print("Skipping service '{}' with more than one variable...".format(service.name))
                continue

            variable = service.variable_set.all().get()
            path = os.path.join(SERVICE_DATA_ROOT, service.data_path)

            tmp_dir = mkdtemp()
            tmp_path = os.path.join(tmp_dir, os.path.basename(service.data_path))

            try:
                with Dataset(path, 'r') as ds:
                    data = ds.variables[variable.variable][:]
                    coords = SpatialCoordinateVariables.from_bbox(service.full_extent, *reversed(data.shape))

                if data.dtype.kind != 'i':
                    print("Ignoring service '{}' with non-int type".format(service.name))
                    continue

                # The fill value will be the minimum value of the chosen type, so we want to make sure it's not
                # included in the actual data range
                min_value = data.min() - 1
                max_value = data.max()

                # Determine the most suitable data type by finding the minimum type for the min/max values and then
                # using the type that will accurately represent both
                min_type = str(numpy.min_scalar_type(min_value))
                max_type = str(numpy.min_scalar_type(max_value))

                min_unsigned, min_size = min_type.split('int')
                max_unsigned, max_size = max_type.split('int')

                dtype = '{}int{}'.format(min_unsigned and max_unsigned, max(int(min_size), int(max_size)))

                if data.dtype == dtype:
                    print("Service '{}' already has the smallest possible type: {}".format(service.name, dtype))
                    continue

                print("Converting service '{}' to type: {}".format(service.name, dtype))

                with Dataset(tmp_path, 'w', format='NETCDF4') as ds:
                    coords.add_to_dataset(ds, variable.x_dimension, variable.y_dimension)

                    data = data.astype(dtype)
                    fill_value = numpy.ma.maximum_fill_value(numpy.dtype(dtype))
                    numpy.ma.set_fill_value(data, fill_value)

                    data_var = ds.createVariable(
                        variable.variable, dtype, dimensions=(variable.y_dimension, variable.x_dimension),
                        fill_value=fill_value
                    )
                    data_var[:] = data

                    set_crs(ds, variable.variable, service.full_extent.projection)

                os.unlink(path)
                shutil.copy2(tmp_path, path)

            finally:
                try:
                    shutil.rmtree(tmp_dir)
                except OSError:
                    pass
Exemple #12
0
def test_SpatialCoordinateVariables_bbox():
    proj = Proj(init='EPSG:4326')
    bbox = BBox((10.5, 5, 110.5, 55), projection=proj)
    coords = SpatialCoordinateVariables.from_bbox(bbox, 10, 5)
    assert coords.bbox.as_list() == bbox.as_list()
Exemple #13
0
def netcdf_to_raster(path_or_dataset,
                     variable_name,
                     outfilename,
                     index=0,
                     projection=None):
    """
    Exports a 2D slice from a netcdf file to a raster file.
    Only GeoTiffs are supported at this time.


    Parameters
    ----------
    path_or_dataset: path to NetCDF file or open Dataset
    variable_name: name of data variable to export from dataset
    outfilename: output filename
    index: index within 3rd dimension (in first position) or 0
    projection: pyproj.Proj object.  Automatically determined from file if possible
    """

    if isinstance(path_or_dataset, string_types):
        dataset = Dataset(path_or_dataset)
    else:
        dataset = path_or_dataset

    projection = projection or get_crs(dataset, variable_name)
    if not projection:
        raise ValueError(
            'Projection must be provided; '
            'no projection information can be determined from file')

    # TODO figure out cleaner way to get affine or coords
    y_name, x_name = dataset.variables[variable_name].dimensions[:2]
    coords = SpatialCoordinateVariables.from_dataset(dataset,
                                                     x_name,
                                                     y_name,
                                                     projection=projection)
    affine = coords.affine

    if outfilename.lower().endswith('.tif'):
        format = 'GTiff'
    else:
        raise ValueError(
            'Only GeoTiff outputs supported, filename must have .tif extension'
        )

    variable = dataset.variables[variable_name]
    ndims = len(variable.shape)
    if ndims == 2:
        if index != 0:
            raise ValueError('Index out of range, must be 0')
        data = variable[:]
    elif ndims == 3:
        # Assumes that time dimension is first
        if index < 0 or index >= variable.shape[0]:
            raise ValueError('Index out of range, '
                             'must be between 0 and {0}'.variable.shape[0])
        data = variable[index]

    else:
        raise ValueError(
            'Unsupported number of dimensions {0} for variable {1}, '
            'must be 2 or 3'.format(ndims, variable_name))

    array_to_raster(data,
                    outfilename,
                    format=format,
                    projection=projection,
                    affine=affine)
Exemple #14
0
def raster_to_netcdf(filename_or_raster,
                     outfilename=None,
                     variable_name='data',
                     format='NETCDF4',
                     **kwargs):
    """
    Parameters
    ----------
    filename_or_raster: name of file to open with rasterio, or opened rasterio raster dataset
    outfilename: name of output file.  If blank, will be same name as input with *.nc extension added
    variable_name: output format for netCDF file: NETCDF3_CLASSIC, NETCDF3_64BIT, NETCDF4_CLASSIC, NETCDF4
    format
    kwargs: arguments passed to variable creation: zlib

    Note: only rasters with descending y coordinates are currently supported
    """

    start = time.time()

    if isinstance(filename_or_raster, string_types):
        if not os.path.exists(filename_or_raster):
            raise ValueError(
                'File does not exist: {0}'.format(filename_or_raster))

        src = rasterio.open(filename_or_raster)
        managed_raster = True
    else:
        src = filename_or_raster
        managed_raster = False

    if not src.count == 1:
        raise NotImplementedError(
            'ERROR: multi-band rasters not yet supported for this operation')

    prj = pyproj.Proj(**src.crs)

    outfilename = outfilename or src.name + '.nc'
    with Dataset(outfilename, 'w', format=format) as target:
        if prj.is_latlong():
            x_varname = 'longitude'
            y_varname = 'latitude'
        else:
            x_varname = 'x'
            y_varname = 'y'

        # TODO: may need to do this in blocks if source is big
        data = src.read(1, masked=True)

        coords = SpatialCoordinateVariables.from_bbox(BBox(src.bounds, prj),
                                                      src.width, src.height)
        coords.add_to_dataset(target, x_varname, y_varname, **kwargs)

        out_var = target.createVariable(variable_name,
                                        data.dtype,
                                        dimensions=(y_varname, x_varname),
                                        **kwargs)
        out_var[:] = data
        set_crs(target, variable_name, prj, set_proj4_att=False)

    if managed_raster:
        src.close()

    print('Elapsed {0:.3f} seconds'.format(time.time() - start))
    def handle(self, *args, **options):
        elevation_service = Service.objects.get(name='west2_dem')
        with Dataset(os.path.join(settings.NC_SERVICE_DATA_ROOT, elevation_service.data_path)) as ds:
            coords = SpatialCoordinateVariables.from_dataset(
                ds, x_name='lon', y_name='lat', projection=Proj(elevation_service.projection)
            )
            elevation = ds.variables['elevation'][:]

        message = 'WARNING: This will replace all your transfer limits. Do you want to continue? [y/n]'
        if input(message).lower() not in {'y', 'yes'}:
            return

        self.transfers_by_source = {}

        with transaction.atomic():
            TransferLimit.objects.all().delete()

            for time_period in ('1961_1990', '1981_2010'):
                for variable in VARIABLES:
                    print('Processing {} for {}...'.format(variable, time_period))

                    variable_service = Service.objects.get(name='west2_{}Y_{}'.format(time_period, variable))
                    with Dataset(os.path.join(settings.NC_SERVICE_DATA_ROOT, variable_service.data_path)) as ds:
                        data = ds.variables[variable][:]

                    for zone in SeedZone.objects.all():
                        clipped_elevation, clipped_data, clipped_coords = self._get_subsets(
                            elevation, data, coords, BBox(zone.polygon.extent)
                        )

                        zone_mask = rasterize(
                            ((json.loads(zone.polygon.geojson), 1),), out_shape=clipped_elevation.shape,
                            transform=clipped_coords.affine, fill=0, dtype=numpy.dtype('uint8')
                        )

                        masked_dem = numpy.ma.masked_where(zone_mask == 0, clipped_elevation)
                        min_elevation = max(math.floor(numpy.nanmin(masked_dem) / 0.3048), 0)
                        max_elevation = math.ceil(numpy.nanmax(masked_dem) / 0.3048)
                        bands = list(self._get_bands_fn(zone.source)(zone.zone_id, min_elevation, max_elevation))

                        if not bands:
                            print('WARNING: No elevation bands found for {}, zone {}'.format(
                                zone.source, zone.zone_id
                            ))
                            continue

                        for band in bands:
                            low, high = band

                            # Bands are exclusive of the low number, so the first band is a special case, since we
                            # want to include 0. So we work around it by making the actual low -1
                            if low == 0:
                                low = -1

                            # Elevation bands are represented in feet
                            masked_data = numpy.ma.masked_where(
                                (zone_mask == 0) | (clipped_elevation <= low * 0.3048) |
                                (clipped_elevation > high * 0.3048),
                                clipped_data
                            )

                            self._write_limit(variable, time_period, zone, masked_data, low, high)

            for source, transfers_by_variable in self.transfers_by_source.items():
                for variable, transfers in transfers_by_variable.items():
                    TransferLimit.objects.filter(
                        variable=variable, zone__source=source
                    ).update(
                        avg_transfer=mean(transfers)
                    )
Exemple #16
0
def mask(
    input,
    output,
    variable,
    like,
    netcdf3,
    all_touched,
    invert,
    zip):

    """
    Create a NetCDF mask from a shapefile.

    Values are equivalent to a numpy mask: 0 for unmasked areas, and 1 for masked areas.

    Template NetCDF dataset must have a valid projection defined or be inferred from dimensions (e.g., lat / long)
    """

    with Dataset(like) as template_ds:
        template_varname = data_variables(template_ds).keys()[0]
        template_variable = template_ds.variables[template_varname]
        template_crs = get_crs(template_ds, template_varname)

        if template_crs:
            template_crs = CRS.from_string(template_crs)
        elif is_geographic(template_ds, template_varname):
            template_crs = CRS({'init': 'EPSG:4326'})
        else:
            raise click.UsageError('template dataset must have a valid projection defined')

        spatial_dimensions = template_variable.dimensions[-2:]
        mask_shape = template_variable.shape[-2:]

        template_y_name, template_x_name = spatial_dimensions
        coords = SpatialCoordinateVariables.from_dataset(
            template_ds,
            x_name=template_x_name,
            y_name=template_y_name,
            projection=Proj(**template_crs.to_dict())
        )


    with fiona.open(input, 'r') as shp:
        transform_required = CRS(shp.crs) != template_crs

        # Project bbox for filtering
        bbox = coords.bbox
        if transform_required:
            bbox = bbox.project(Proj(**shp.crs), edge_points=21)

        geometries = []
        for f in shp.filter(bbox=bbox.as_list()):
            geom = f['geometry']
            if transform_required:
                geom = transform_geom(shp.crs, template_crs, geom)

            geometries.append(geom)

    click.echo('Converting {0} features to mask'.format(len(geometries)))

    if invert:
        fill_value = 0
        default_value = 1
    else:
        fill_value = 1
        default_value = 0

    with rasterio.drivers():
        # Rasterize features to 0, leaving background as 1
        mask = rasterize(
            geometries,
            out_shape=mask_shape,
            transform=coords.affine,
            all_touched=all_touched,
            fill=fill_value,
            default_value=default_value,
            dtype=numpy.uint8
        )

    format = 'NETCDF3_CLASSIC' if netcdf3 else 'NETCDF4'
    dtype = 'int8' if netcdf3 else 'uint8'

    with Dataset(output, 'w', format=format) as out:
        coords.add_to_dataset(out, template_x_name, template_y_name)
        out_var = out.createVariable(variable, dtype, dimensions=spatial_dimensions, zlib=zip,
                                     fill_value=get_fill_value(dtype))
        out_var[:] = mask