def __init__(self, name, source=None, destination=None, custom_workflow_param=None): self.custom_workflow_param = custom_workflow_param Workflow.__init__(self, name, source, destination)
def __init__( self, name, source=None, destination=None, interval="day", threshold=2.5, window=7, raw_data_col_name="_raw", ): self.interval = interval self._threshold = threshold self._window = window self._snp = SplunkNotableParser() self._raw_data_col_name = raw_data_col_name Workflow.__init__(self, name, source, destination)
def test_benchmark_decorator(tmpdir, mock_env_home, set_workflow_config): # Dummy function def func(self): return DataFrame() benchmarked_func = Workflow.benchmark(func) source = set_workflow_config[1] destination = set_workflow_config[2] test_dir = tmpdir.mkdir("tmp_test_workflow") input_path = str(test_dir.join("person.csv")) input_df.to_csv(input_path, index=False) output_path = str(test_dir.join("output_benchmark.csv")) source["input_path"] = input_path destination["output_path"] = output_path # Create new workflow with source and destination configurations tb = spy( TestWorkflowImpl(source=source, destination=destination, name="test-workflow")) benchmarked_func(tb.run_workflow) # Verify that run_workflow was not called, instead expect that benchmark wrapper function will be called verify(tb, times=0).run_workflow(...)
def test_benchmark_decorator( mock_env_home, set_workflow_config, input_path, output_path ): # Dummy function def func(self): return DataFrame() benchmarked_func = Workflow.benchmark(func) source = set_workflow_config[1] destination = set_workflow_config[2] source["input_path"] = input_path destination["output_path"] = output_path # Create new workflow with source and destination configurations tb = spy( TestWorkflowImpl(source=source, destination=destination, name="test-workflow") ) benchmarked_func(tb.run_workflow) # Verify that run_workflow was not called, instead expect that benchmark wrapper function will be called verify(tb, times=0).run_workflow(...)