Exemple #1
0
def asarray(ctx, other, queue=None, copy=True):
    
    if not isinstance(other, cl.DeviceMemoryView):
        other = cl.from_host(ctx, other, copy=copy)
        
    array = CLArray._view_as_this(other)
    array.__array_init__(ctx, queue)
    
    return array
Exemple #2
0
    def __call__(self, x, out=None, queue=None):

        if queue is None:
            queue = x.queue

        if not isinstance(x, cl.DeviceMemoryView):
            x = cl.from_host(queue.context, x)

        if out is None:
            out = cl.empty(queue.context, x.shape, x.format)

        unary_ufunc_kernel(queue, self.device_func, x, out)

        array = CLArray._view_as_this(out)
        array.__array_init__(queue)
        return array
Exemple #3
0
    def __call__(self, x, out=None, queue=None):
        
        if queue is None:
            queue = x.queue

        if not isinstance(x, cl.DeviceMemoryView):
            x = cl.from_host(queue.context, x)
        
        if out is None:
            out = cl.empty(queue.context, x.shape, x.format)
        
        unary_ufunc_kernel(queue, self.device_func, x, out)
        
        array = CLArray._view_as_this(out)
        array.__array_init__(queue)
        return array
Exemple #4
0
    def __call__(self, context, x, y, out=None, queue=None):

        if queue is None:
            if hasattr(x, 'queue'):
                queue = x.queue
            elif hasattr(y, 'queue'):
                queue = y.queue
            else:
                queue = context.queue

        if not isinstance(x, cl.DeviceMemoryView):
            x = context.asarray(x)
        if not isinstance(y, cl.DeviceMemoryView):
            y = context.asarray(y)

        if y.queue != queue:
            queue.enqueue_wait_for_events(y.queue.marker())
        if x.queue != queue:
            queue.enqueue_wait_for_events(x.queue.marker())

        new_shape = broadcast_shape(x.shape, y.shape)

        a = cl.broadcast(x, new_shape)
        b = cl.broadcast(y, new_shape)

        if out is None:
            out = context.empty(shape=new_shape, ctype=x.format, queue=queue)


#        kernel_source = ufunc_kernel._compile(queue.context, function=self.device_func,
#                                      a=cl.global_memory(a.format, flat=True),
#                                      b=cl.global_memory(b.format, flat=True),
#                                      out=cl.global_memory(out.format, flat=True), source_only=True)

        kernel = ufunc_kernel.compile(context,
                                      function=self.device_func,
                                      a=cl.global_memory(a.format, flat=True),
                                      b=cl.global_memory(b.format, flat=True),
                                      out=cl.global_memory(out.format,
                                                           flat=True),
                                      cly_meta=self.device_func.func_name)

        kernel(queue, a, a.array_info, b, b.array_info, out, out.array_info)

        array = CLArray._view_as_this(out)
        array.__array_init__(context, queue)
        return array
Exemple #5
0
    def __call__(self, context, x, y, out=None, queue=None):
        
        if queue is None:
            if hasattr(x,'queue'):
                queue = x.queue
            elif hasattr(y,'queue'):
                queue = y.queue
            else:
                queue = context.queue
            
            
        if not isinstance(x, cl.DeviceMemoryView):
            x = context.asarray(x)
        if not isinstance(y, cl.DeviceMemoryView):
            y = context.asarray(y)
        
        if y.queue != queue:
            queue.enqueue_wait_for_events(y.queue.marker())
        if x.queue != queue:
            queue.enqueue_wait_for_events(x.queue.marker())
        
        new_shape = broadcast_shape(x.shape, y.shape)
        
        a = cl.broadcast(x, new_shape)
        b = cl.broadcast(y, new_shape)
        
        if out is None:
            out = context.empty(shape=new_shape, ctype=x.format, queue=queue)
        
#        kernel_source = ufunc_kernel._compile(queue.context, function=self.device_func,
#                                      a=cl.global_memory(a.format, flat=True),
#                                      b=cl.global_memory(b.format, flat=True),
#                                      out=cl.global_memory(out.format, flat=True), source_only=True)

        kernel = ufunc_kernel.compile(context, function=self.device_func,
                                      a=cl.global_memory(a.format, flat=True),
                                      b=cl.global_memory(b.format, flat=True),
                                      out=cl.global_memory(out.format, flat=True), 
                                      cly_meta=self.device_func.func_name)
        

        kernel(queue, a, a.array_info, b, b.array_info, out, out.array_info)
        
        array = CLArray._view_as_this(out)
        array.__array_init__(context, queue)
        return array
Exemple #6
0
    def reduce(self, context, x, out=None, initial=0.0, queue=None):

        if queue is None:
            queue = x.queue

        if not isinstance(x, cl.DeviceMemoryView):
            x = cl.from_host(queue.context, x)

        #output, input, shared, group_size, initial=0.0
        size = x.size
        shared = cl.local_memory(x.ctype, ndim=1, shape=[size])

        group_size = size // 2
        for item in [2, 4, 8, 16, 32, 64, 128, 256, 512]:
            if group_size < item:
                group_size = item // 2
                break
        else:
            group_size = 512

        if out is None:
            out = cl.empty(queue.context, [1], x.format)

        kernel = reduce_kernel.compile(queue.context,
                                       function=self.device_func,
                                       output=cl.global_memory(out.ctype,
                                                               flat=True),
                                       array=cl.global_memory(x.ctype,
                                                              flat=True),
                                       shared=shared,
                                       group_size=cl.cl_uint,
                                       cly_meta=self.device_func.func_name)

        max_wgsize = kernel.work_group_size(queue.device)

        group_size = min(max_wgsize, group_size)

        kernel(queue, out, out.array_info, x, x.array_info, shared,
               shared.local_info, group_size)
        #        reduce_kernel(queue, self.device_func, out, x, shared, group_size)
        #        reduce_kernel(queue, self.device_func, out, x, shared, group_size)

        array = CLArray._view_as_this(out)
        array.__array_init__(context, queue)
        return array
Exemple #7
0
    def reduce(self, context, x, out=None, initial=0.0, queue=None):
        
        if queue is None:
            queue = x.queue
        
        if not isinstance(x, cl.DeviceMemoryView):
            x = cl.from_host(queue.context, x)
            
        #output, input, shared, group_size, initial=0.0
        size = x.size
        shared = cl.local_memory(x.ctype, ndim=1, shape=[size])
        
        group_size = size // 2
        for item in [2, 4, 8, 16, 32, 64, 128, 256, 512]:
            if group_size < item:
                group_size = item // 2
                break
        else:
            group_size = 512
        
        if out is None:
            out = cl.empty(queue.context, [1], x.format)
        
        kernel = reduce_kernel.compile(queue.context,
                                       function=self.device_func,
                                       output=cl.global_memory(out.ctype, flat=True),
                                       array=cl.global_memory(x.ctype, flat=True),
                                       shared=shared,
                                       group_size=cl.cl_uint,
                                       cly_meta=self.device_func.func_name)
        
        max_wgsize = kernel.work_group_size(queue.device)
        
        group_size = min(max_wgsize, group_size)
        
        kernel(queue, out, out.array_info, x, x.array_info, shared, shared.local_info, group_size)
#        reduce_kernel(queue, self.device_func, out, x, shared, group_size)
#        reduce_kernel(queue, self.device_func, out, x, shared, group_size)
        
        array = CLArray._view_as_this(out)
        array.__array_init__(context, queue)
        return array